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g- Introduction.

Is there knowledge? it will vanish away; for our knowledge
and our prophecy alike are partial and the partial vanishes

when wholeness comes. { Corinthians 13 v 9
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0. Introduction. 5 i

0.1 Background, Motivation and Philosophy.

0.1.1 During the past 25 years a large number of papers have

appeared on structural adaptation through reinforcement.

m

U

chaos ————3 structure adapted to environment m

Much of this work can ultimately be traced back to the ideas of
Skinner (operant conditioning) in the 1930's, and Wiener (feedback
and cybernetics) and Von Neumann (automata) in the 1940's, which

have since developed in many disciplipmary niches.

0.1.2 The approach adopted in this thesis attempts to unify

the conceptual basis in a basic evolving stochastic automaton named
the TT-cell, defined in 1.7. This element is essentially provided by
the work of Bush and Mosteller (1955), but the framework of mathematical
psychology has changed little since then, and has culminated in the
profound mathematical treatment of Norman (1972). Other significant
contributions have been provided by Lamperti and Suppes (1960) based
on the work of Luce (1959), on the'ﬁ-rule. This has since been placed
on a more general basis by Kanal (1962) and Marley (1967), and much
of learning theory was incorporated into random systems with complete
connections by Iosifescu and Theodorescu (1969),

C.1.3 Norman (1975) actually relates the Hardy-Weinberg eguations
of mathematical genetics to a stochastic reinforcement mechanism
similar to those of psychological learning theory. Indeed, the laws
of mathematical genetics of Fisher (1930) are specific reinforcement
mechanisms arising from survival or extinction of genotypes, with

the seleetive viabilities acting as the environmental stimuli.
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This has a natural comparison with Skinner's (1938) operant
conditioning, where reinforcement arises from the reward or penalty
received on executing an action , depending stochastically on its
expediency within the environment.

Hoth genetics and learning theory can be represented by
unstructured automata since in both fields we consider evolving
distributions over genotypes or choices rather than allowing the
automata to have an underlying network of transitions. In chapters
1 and 2 we consider such unstructured automata, whilst in chapter
3 we extend the theory to structured automata.

O.1.4. In 1961, the Russian mathematician Tsetlin published a
piconeering paper on fixed structured automata, which opened up a

new field of research linked with economic behaviour. Then in 13963
Vorontsova and Varshavskii considered the possibility of starting

from an arbitrary structure, and defining reinforcement rules which
give expedient adaptation to an environment. These structures evolving
under reinforcement are essentially networks of Ti -cells with
underlying digraphs (reward-penalty). It was then only possible to

use computer simulations rather than theoretical techniques, since
evolution by reinforcement raises many techniecal difficulties,

which were treated by Norman (1968). The deterministic automata
developed in Russia have been considered as models for biclogical
systems, Tsetlin (1974%), gueuing systems and synchronisation,
Varshavskii, Meleshina and Tsetlin (1965,1968) and power regulation,
Stefanyuk and Tsetlin (1267).

0:1.5. Thus, structural adaptation need not be soldy biological,
for we could consider the evolution of urban systems and cities,

Bacon (1974), the differentiation of roles within society,Whittle (1971},

or the development of knowledge itself through research.
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S0 we can consider our scientific knowledge as an evolving entity
in which we abstract laws and build models from information we receive
from the environment, and test these through further actions ( experiments).
A simple example of this is the development of the uniform polyhedra.
The amcient Greeks knew of the Platoniec solids, yet Keplar (1619)
and subsequently Poinsot (1809) considered certain stellations and
showed them to be uniform, Finally Coxeter et Al (1954) enumerated
75 such uniform polyhedra with increased complexity of kernal
structure and stellation depth, and Skilling (1975) showed by
direct computer search that the list was indeed complete. I have
taken this example because the stellation process is similar to
the process of increasing "memory depth" in structured automata,
whilst preserving the "S0SA" property (chapter 3), and the kernal
corresponds to an action-switch (3.4.5.).
0.1.6. But all structural adaptation appears to stem ultimately
from "life". The reward-penalty stimuli used in our Tl -cell models
are themselves derived concepts and more fundamentally we could
view the actions executed by a structure,and the consequent structural
reinforcement,as relating directly to its own survival. Pollution,
in its broadest sense, is then that which tends to inhibit the
reinforcement mechanism within the environment. Bernal (1967),
Calvin (1969) and Cairns-Smith (7971) all consider how "life™
could spontanecusly arise on primeval earth.

Structures "feed" on -ve entropy, Schrodinger {1944 ), giving
rise to hierarchical stability through "food" chains and ecological
communities within the environment. In the absence of useful energy
there is erosion and decay through the action of the 2nd law of
thermodynamics. Glansdorff and Frigogine (1971) consider such an approach.

Structures may ultimately "stagnate" and become fixed, yet
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b,

they may achieve higher forms of adaptation through a metamorphosis

achieved by rejuvenation. (fluidisation of form)
-
“\,\\ -
B re juvenation f’fﬁf
o 7 divergent-open to new
convergent to ™~ f
//f 7 2 possibilities of
| fixed structure
- daptation Z
metamorphosis
e fixed ———3 fluid

gi represent structures,

In chapter 3, we consider a stochastic automaton as an evolving
entity with an initial random structure. Yet, through reinforcement,
thie probabilistie "fluid" form asymtotically becomes a deterministic
"fixed" structure, acting expediently in its markovian environment,

The limiting structure is not necessarily unique, so that it may
be possible for the automaton to increase its payoff (adaptation)
through a metamorphosis as outlined above, where fluidisation is
translated mathematically as allowing state transitions to be
probabilistic rather than deterministic.
0157 In 1965, American control engineers Fu and Mc Murty became
interested in the possibility of using learning automata as an
alternative to the standard hill-climbing techniques, since virtually
no prior information is reguired on environmental parameters and
the rules themselves are simple, It is also quite easy to set several
automata loose on a multimedal funetion in attempting to find a global
maxima, as in Jarvis (1975). The paper of Fu and Mc Murty, based
on the work of Vorontsova and Varshavskii (1963), initiated a new
field which remained isolated from mathematical psychology until
1971. During the period 1966-71, Chandrasekaren and Shen (1967)

formulated games between unstructured automata and performed
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5.
computer simulations, later extended by Viswanathan and Narendra
(1974). They demonstrated oscillatory behaviour which is treated
analytically in this thesis. These unstructured games are also
related to the structured games of Tsetlin (1963) and the || -cell
games of chapter 2 seem a natural gaming approach.

When the engineering literature was merged with the work of
Norman, several fallacious stability arguments were revealed by a
counter-example of Kushner, published by Viswanathan and Narendra
(1971), and are considered firther by Narendra and Thathachar (1974).
The stability criteria used by the engineers were only wvalid in
a deterministic rather than a probabilistic process, when flow
against a probabilistic drift is possible for all time, The optimal
reinforcement rules developed in this thesis actually do only reguire
a deterministic stability criteria which is the technique of
boundary learning (1.7). 580 the conditions are given under which the
ideas n{ Chandrasekaren do carry over from a probabilistic to a
deterministic control theoretic framework.

0.1.8. A series of papers by Cover and Hellman (1970) on
hypothesis testing by finite memory, used static automata resembling
those of Tsetlin. The finite memory constraint was contested by
Chandrasekaren (1970) and at present no truly satisfactory definition
is to be found, apart from in the information theory of Shannon (1949).

The 7/-cells themselves have OO memory in that a real number is
held to arbitrary accuracy and similarly in the work of Cover and
Hellman, a randomiser is used to generate arbitrarily small probabilities.
Further, even with " oo computing power' we obtain undecidable
propositions in logic ( as with Turing's automaton), which are
essentially obtained through a +ve feedback of the theory on to

itself, (symbolically C%}], which gives knowledge a certain relativity.
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6.
This seems related to structural adaptation when ultimately, in setting

up a mathematical framework, we may attain such intrinsic incompleteness.
"Is an evolving automaton of sufficient complexity (a universal automaton)
able to explain its own existence and motivate its continued
evolution?" This is a deep philosophical question debated by
philosophers through the ages, including Sartre and Camus in our
own century.

Returning to the statistical framework, a completely independant
theory of evolutionary operation was developed in America, primarily
for optimising the operation of industrial chemical plants. A
thorough treatment of this concept (EVOP) is covered in Box and
Draper (1962 and 1969). The basic philosophy is very similar to
that in this thesis in that we have operational research based on
the biological theory of Darwin.

action

autnmatcn-g (]]-environment

It seems possible that viewing a system, perhaps an industry,
as an evolving entity in its environment, with competing systems,
will prove a useful future frame of reference in operational
research. This paradigm is indeed pursued in Day and Groves (1975)
as a basis for future economic theory.

D.1.9. Models of brain mechanisme were initisted by Mec Culloch
and Pitts in 19#3, with their basic threashold neuron. This field
of work has held a virtually independent existence, developing
into the computer based field of pattern recognition and automatic
clustering. Rosenblatt defined the gl -perceptron in 1957, which was

developed into the T.L.U.(threashold legic unit ) used in the
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monograph of Nilsson (1965). These models do exhibit structural
adaptation but I believe that a probabilistic setting is more natural
for abstrecting the notion of environmental uncertainty.
However, this thesis does adopt an elemental approach based on
the ij-cell, instead of the neuron, as the unifying element for
previous work both in psychology and control engineering,.
0.1.10. Cellular automata, treated rigorously by Codd (1968),
have been used by Conway as a model of "life", Gardner (1971),
which is deterministic yet generates unpredictable patterns.
However,in this thesis we are concerned with models that explicitly
have actions executed by an automaton, with the resulting stimuli
acting as the next input. In "life", we generate structural forms
related to the specified rules of state transition, yet there is no
structural adaptation within the environment, Such automata were
formulated by Von Neumann (1948) as a model of self-reproduction.
Richardson (1976) has also recently considered the self-replication
of molecules, which would appear essential for structural reinforcement.
Kauffman (1969) considered cellular behaviour modelled with
random genetic nets, also based on elemental "binary automata" with
underlying deterministic digraph. These have been used as a practical
model for learning by Aleksander (1971).
0.1.11. Recent interest in morphogenesis has been arcused by
the treatise of Thom (1975), which embraces both bioclogical and
physical structural adaptation. We shall briefly consider certain
similarities between boundary learning and catasrophes in 1.13, giving
the theory of the evolving stochastic automaton similarities with
topological morphogenesis. Indeed, in chapter 3, we shall see how
a {i-cell network gives a simple model for the underlying mechanism

of cellular differentiation, without any form of centralised control.
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D.1.12. The work of Bush and Mosteller (1955) was based on a
learning 1i-cell, but the foundations have since become obscured
by the analysis of reinforcement rules and parameter estimation.
The il =cell is defined to use any uniformly learning rule (1.2 and 1.8).
Having returned to the basic learning entity, the concept is extended
to cover:-

a) Automata games.

b) Adaptation in dynamic environments.

c) Cellular differentiation.

d) Hierarchical adaptation.

My aim in this thesis is to emphasise the new conceptual
framework rather than to dwell on the rigorous mathematical
derivations, which are still incomplete, particularly for ] =cell
networks which require deep probabilistic ideas in their analysis.

For a deeper treatment of the background literature, I refer

the reader to the excellent survey paper of Narendra and Thathachar (1974).
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0,2 Summar1¢

The 7j-cell corresponds to an evolving unstructured automaton
and gives a generalisation to the work of Norman (1972). In
successive chapters we shall analyse:-

1). The singleton Ti-cell evolving in envircnment 1 .

Existing reinforcement rules mathematical psychology are either
conditionally optimal or £-optimal. A theory of optimal reinforcement
rules is developed and their properties investigated in both static
and dynamic environments., The optimality is shown to depend on a
uniform learning property and behaviour near the absorbing barriers.
This is in contrast to conditionally optimal rules, Luce (1959),
Lamperti and Suppes (1960), which are non-uniformly learning, and
g-optimal rules, Norman (1968),which are centrally rather than
boundary learning (1.7).

2)., OGames between 7 -cells.

The fi=cellis essentially a time dependant pie graph that

"adapts" to its environment (Jl . Symbolically we shall use é?i

to designate the it'J:l T-cell. & game between 'ﬁ-cells is now easily

thTi -cell @i acting in an environment fmi =1 @j;t’is.

Each T -cell only knows the result of its own strategy and knows

explained as the i

nothing of the behaviour of competing 'ir—cella. However, 2.5.1 gives
Rash point convergence when such a point exists, whilst 2.3.3 gives
optimal time-averaged payoff for zero-sum games with an eguilibrium
point of mixed strategies,in the deterministic approximation to the
automata trajectories.

3). Networks of {j-cells.

The network consists of a set of f|-cells with an underlying

probabilistic digraph q s Which is described by the two markovw
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10.
transition matrices ﬁ':j. The superscript 55{0,11 represents the
stimulus received, and this determines which transition matrix,

G-gj or Flj to use. Initially, each automaton state is associated
with a specifie action, but this is developed to allow a distribution
over all actions in each state. The state space is partitioned into
into sets of states using a particular ﬁ-cell.

Pi =ﬁ X, :éai is used, where X, denotes state R]. The mechanism

of reinforcement and mode of operation of the automata is described
in detail in 5.7. Limiting structures are considered in 3.2 3 3.6.

In 3.7, theTr-cell network is considered as a model for cellular
differentiation. However, it has not yet been possible to give
rigorous proofs owing to the complexity of the process but it is
planned to carry out a program of computer simulations in the future
to guide the theoretiecal insight.

Finally, in 3.9, we briefly consider the concept of hierarchies
of fl=cells, so that afl —cell network is a level-1 hierarchyg1lf$)
and a {l -cell becomes a level=0 hierarchygo(@ ). This provides a
further unifying link and a basis for further research,

Another fruitful area for future research appears to be the
community behaviour of automata for co-operation rather than the
competition of chapter 2. This has been considered in particular by
Chaikovskii (196¢) and Golowvchenko (1974), based on the work of
Tsetlin et al (1963,1964,1965) and published in full in the collected
works of Tsetlin (1974).

Community behaviour is considered in the examples of 2.5 and

briefly in the "sheep effect" of 3.11.

I should like to acknowledge the help, encouragement and inspiration
of my supervisor, Peter Whittle, during this period of research, which

was undertaken during the tenure of an S.R.C. grant (1973-1976).
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Chapter 1.

Is there a thing of which it is esaid," See, this is new"?

It has been already, in the ages before us,

Ecclesiastes 1 v 10.
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1M.

1. Unstructured Automata.

-~
1.1, The Singleton ll~Cell,

u; - sequence ui(t}éhuj{t+1}' uk{t+2)...expariment

—_— =

’ﬁ -cell- @ m - environment

s - sequence =s(t), s{t+1), s(t+2)...observation

T~

Definition 1.1.1.
A fi-cell is a specific form of evolving automaton with the

following properties:-

s(t) ¢{0,1) Fava) uy (£41).

Y
VY% /
Input stimuli s € {0,1} s=0 penalty, s=1 reward.
OQutput actions u, 1% i€n.
- - -
state 1 = (¥, ... Tp), T (t) = Pr( output action u, at time t¢ N).
Transition i j(t+1] = Ud(t} + Ti;i on receiving s(t)=0) action i
- -
1.(t+1) = |l ,(t) + 8 " n s(t)=1| used at
"3 s 13

time €.

and normalise a ﬁi(tﬁl =9

We now define the the environment m (ﬂiﬁ , 611.5 )
Ag
fi‘:? Pr(stimulus is; | ug(t) ana E ().

and 1t:= ii= FFH;
Until section 1.72 we shall have a static m i= ﬂ"’.‘g= S_EF (delta function)

Pr( E*ft}-}'EF(tH}]. where E, is the environment state .

Thus under static ﬂﬂ the environment state remains the same for all time.
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12
¥ow define R({i(t)) =£qif'|i(t}. the expected reward.
i

The transition rule is uniformly learning if R(l) is a

sub-martingale.

In 1.2 we find conditions under which Tij and Sij are U.L.
(uniformly learning).

The transition rule is usually refered to as a reinforcement
rule by the mathematical psychologists.

The rule is optimal if 1im i (t) = 1 aly if a,7 a, for all j.

tap * ! 1773

Vorontsova (1965) considered non-linear reinforcement rules in
continuous time,for 2 actions, and gave conditions for a family
of rules to be optimal. However, in the survey paper of Narendra
(1974 ), it was still unknown whether such rules gave optimal discrete
time behaviour. Linear rules of the form Tij =0, Sij =f Sii =5U-HJ
have been shown by Norman (1968) to be ¢ -optimal, that is:-

lim lim { (t) = 1 when a;7 4 for all j £y
B0 12

But no discrete time rules have been proven optimal independant of g
In this chapter, we shall prove the existence of a family of
optimal discrete time rules for n-actions, and show that this
optimality is only dependant on boundary behaviour. This boundary
learning is essential when we consider fj -cell networks and we test
absorbing barriers at boundaries for probabilistic stability with

respect to the optimal reinforcement rules.

1.2. Uniform Learning.

For any random variable X(t), we denote the expected increment
by Dx(t) =  (X(t+1) | X(£)sews X(0)) = X(2).
Thus a rule is U,L. if /\ R(T(t))% 0. Rather than state the rules
that we shall be using, I shall indicate why we are restricted to a

certain family, through a series of lemmas.
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135,
Theorem 1.2.1. (Whittle)
The necessary and sufficient conditions on feasible Sij
and Tij to give A\ Rz0 are:-
a}.€i|isij =€:-niTij =0
and b). |2 0 where }‘ij = %('ﬁi(sij—T JJ;}”;}K%:L”'

ij
Proof
We have \R = gqiﬂi =_ﬂqifﬁjqj jii-Ll'JpjTji].
= q'\q +J£(‘£iliii‘fij]qj. i
=p'\p +§(€ﬂisﬁ)pj. ii

For necessity, we just consider a small perturbation £ from
q.:qd'pfij. Put 1“-11'5 y then IR - t‘JEf_(f].lT as
‘Lni {) and Q\J,J :() by normalieation, Now to prave ,ﬂﬁza » We just
require e slijfficiently small and then we choose 5 to give §(4il T )5 <0
which is always possible if ‘EHTH} {Hota that gﬂf [Hiéf] an::[i
can be neglected w.r.t._.ﬁu‘-‘fuel .}Henceg“.-flj,ﬂand 70 are necessary.
Similarly fj,ii-jeo from ii above. The conditions above clearly sufficieft.
Lemma 1.2.2,

U.L. =7 (ffi, 20 for all k if q, = ay Y 1,3).
Froof. We let g = q) for all i and evaluatelji, .

An . = qk-‘!-' Hisik pkg I, T = O by condition a) above, and

we actually also have:- (If E-cl for any c,.?ﬂﬂk_ ‘n‘k](-—? a), in 1.2.1.

Lemma 1.2.5.

The linear rule T;; =0, 5;, = -gijuj, Siy =Bii(1~ui} is
U.L. iff gid =§ 41,3
Proof.

i‘ﬂi 1 =) f(aii @'ijf = 0 and hence 911 glj"fi,j
and lemma 1.2.2 gives f{ﬂjd E}i )ui = 0 and so we have ;}ﬁ l] HIJ :
Combining the above, (.- § = constant.
And ﬂ R = f‘}ﬁ'ﬁi(qi-qjlaij ]:,’f 0 gives sufficiency.

K
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14,
We cannot extend 1.2.,3 to give U.L. gij{“} -Q{u] i,i, for
non-linear rules but the final three lemmas in this section go
as far as we can.
Lemma 1.2.4,

The non-linear rule T

W
=]

ij
is U.L. iffﬁi(_;i} =B(E} Vi.

' Sy = -gi{Il}ﬁJand 5,4 =0, -,

FProof.
Tokis 57 ‘f“ 5'] +{and hennegil |9,rl|a] gJ[hn 0 Yi.

Hence g (]1) —g (u} Hi ] a.nd,jR -E%Q(It}u (qi llj] I
Lemma 1.2.5.

4 gives sufficiency.

If we restrict the no of actions to n = 2, then the non-linear

0350 -1 ) ie

rule T, = 0, 8, = -gijfjiﬁj i#§ and 5,
U.L. iff gijmJ =[§(E} . Y
Proof.
We have sufficiency as in 1.2.4 and for the necessity.
5[1’[ gives '9;} b1y CMJ 9;; 2
whilst '2“‘-5-“—{] gives 8||='|91| and GH: Q}L
Hence we have gij{,.l: Ig@ H],J-
Lemma 1.2.6.
The non-linear rule Tij = 0, Sij = =0 ijEE«}T‘j i4j and
S35 =033 (MO=iy) n72 4s UL 110, ,(D) = 9,11':{]_:' and
B’iich.} =fgij{|i] ﬁj ( normalisation).
] -
Proof. S .
M = gq Ai: | ﬂ: ft[.“j fn- LQ.,f,' E’j i,}]
< £ gl - fﬁ 91 ii u ;-f.‘ Wi 4'f:'fj)
f',zég Jnu ;I]’fd O 9(f|-f >

and hence the ru!la is U L. an& ncrmaliaation gives ﬁh'”’ 2 Q‘] L “J

-~

Actually it is necessary to have fug fh i;using 2, ;032 =D,
Thus asymtotically as H H we must h,aw H:]’@”I[,Jl.aﬂl [4] StJ 1.2.6. is

really the best practical rule we can formulate.
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15.
U.L. is sufficient for later theorems but not necessary
throughout “ie i :[0,1] and optimality of the Bij (E} rules will
be characterised by certain boundary properties. In 1.6.7. we
briefly disecuss the possible use of Ty in addition to 8,,. First

Jd ij

we consider the convergence of U.L. rules, which fellows from

semi-martingale theorems.

1.5. Convergence.

To ensure that ]i s.t. limﬁi(tJ = 1, we shall use the
t2
symmetric giiﬁ] rules which are the natural extension of the
e

2-action . (1) = 9(_1;!} rules. Under the same condition,( (I) = 0O

i

if and only if some Tli = 1, we obtain boundary convergence for
E(E} family, but apart from E-ac:innﬂ. conditions for optimality
are still unknown. e.g. l;a(ii} =1[l{1 -ﬁi]. All U.L. rules converge
by s/mg theorems, but the difficulty lies in obtaining a.s.

absorption in boundary Ili.-,”l for some i.
]

On taking action i at time t, ui(t,'l.

il (£+1) (€)1 = 9,,(1)) + 8,0, (D) s(t)=

= |
3 13743
ijﬁtﬂ} = le{t}. s(t)=0
We denote this family of rules by ﬂ s where &ijﬁ'} iff Ili = 0 or Tij = 0.
Theorem 1.3.1.
Under € , 1im I () iu,1] Vi

to4
Proof

First we must prove that the limit exists.

-
AR7 O and hence ]ii.'g R(i(t)) =R by s/martingale theorem,
J

hnd Af,: ﬁhgahﬁl}aj{%-ﬂ] for k s.t. a7 q, .
Since 1 Kk is bounded TII‘E%‘Uhé [0-1‘1 by s/mg theorem.
a). First suppose ,ﬂuh;f) and th ®'J)

Now by Doob (1953), as ﬁ[k[rﬂis uniformly integrable, we have
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F3.0
But Eﬁik&*q Iﬂk[ﬂ)'— I‘J#[H!ﬂ]}h?ﬁfor i[he (ﬂl I} .
ana so i (el liy[o)) - £ (0 5011 - J ﬂﬂ'h{*l%u 20
and | .ﬁﬁh[f-): J ﬂh&{r](} >0 ii
e ( see Sawaragi and Baba (1974) for (fl 9 ',u]

where the limit exists as ﬁﬂh converges a,s. and is bounded absolutely

But l{,ﬂ E]IL[H} {ﬂhbﬂ 'Lfk by i and so LII Ji[l.h(

F3e
We ha'.re a contradiction unless ‘Ijh,._ EU js

b) Now let MLFD » which for U.L. rules occurs iff q; = g ¥i.
Again we use Doob, since 1”11{I“ is U.I. |un jlli‘l o) - Ith]'r]l 0
But the variance of increment - (uh(") ﬁ ij -‘51‘11&”

. £ (ighel)- n.!tﬂ 20 Esr ie (01)
and 'E“Ik[hf]-ill[ } ]““'J * il I [ Ok [l‘h 1 'r '9'51 0, “l)

S0 li}n# Eligfto) -y )) i o)) f;g" Jﬂ [l&“h (E&'Hlfl-ukﬂ t é‘E;; il )4 p

_ L 70 4 Vit o).
Yet I;’I‘ZJ Eﬁlh[hl)LE [ﬁ'i[,;]} and we have a contradiction,

Hence both conditiconal expectation and variance vanishing give

us boundary convergence of ilh-

¢) If the rule is optimal, we have i 7| only if q;} q 3 by defn.
d) Now re-order suffices to give q.la q2$ Bt :;'qn, to give
Hi-?lfi (4 1{“7) fi . Hote that 9 ¢ 9 j gives .I!q-?'l-'_jé %L}IJI_
by the same reasoning as al.
Suppose hrﬂ'l Ih(ﬁ=l then result is immediate
Thus let ﬁ'[l'l._;;’ and consider sign{ﬂ.ﬁ; )
We have ﬂﬁf filﬂ'{j (?v'-ij]ﬁ_[ and sgn( Ali, ) ean only
alternate ini'é.nitaly often if  |im i'i,_m[-, "ﬂilij_

S {500
Suppose Bgn(ﬂli;] alternates _g’initnl:,r often, then for T?[’* say,
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we have 'ﬂl[l’il'\ is a s/martingale and Bla\ﬂagfﬁ'ﬂ and by a) and b) Vz{fﬂ, l}’.
Neow by inductiomn, if lim ﬂ‘[t:']rﬂ' for 0<1i ¢r we regquire

\F s A
lim iln.m b 'm |ilwhich is easily proved by adapting above. If E:;P Jir,.,H}"J
k3
w"e' are done, else continue until all suffixes are exhausted, noting

if lim {20 , 0 <15 n=1, then ii|2] by normaiisation. 7/
ta2e
An alternative proof of a) and b) could be based on #up-urnﬂaiuga

over any rational interval is q-gp yBreiman (1968), and hence to
prove 'u'l-egqlgi » Wwe need only note conditional variance 7 at "U]t[DJ),
and so Il-l FY; él‘J :E =) }'Ijb. UP cﬂij]ﬂjs ‘!‘-‘svf’
across any sufficiently short interval {L!.-‘,;,“F i"-ff,] giving contradiction.
Since optimality will be shown to arise from gij“i}l v O as 'ﬁ'.\}{:l'
or Tﬁj‘l,rﬂ y sufficiently fast, it may be thought that [ (t)
would also give optimal rules. However, even though Ttr?'v';e LG“ 1'-]
there is now no reason to restrict Vit 1;,1' li ; we may only have
time dependence occurring thrnughE(t) to give our Qijfz‘u{t}] rules
similarly for § (i(t)) rules overs 2 actions; 1f i [f 0
as [.I.i,} y then we need not have boundary absorption.
Corollory 1.3.2.
Under U.L. 5(}:) rules with E}m"']wifr [Jif‘l for
some i, then  |im i'h{ﬂ é [5[] ]i_ ¥k
Proot t9.p
Use a) and b) of 1.3.1, which hold since conditional wariance
only vanishes at boundary. Indeed b) is sufficient but it is a)
which brings in the concept of probabilistic drift, which is the

key to discussions of optimality. s

In the next sections, we shall initially just consider Z2-actions
which are extended to n 2 in 1.6, Lakemirvarahan and Thathachar
(1973) considered uniformly learning th'lrulas over n-actions, yet

~

seemed unaware that they are not necessarily absorbed in | =,
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boundaries. We use Z2-action Bu rules which are not necessarily
symmetric in ﬁl and .“l. . Previous authors have assumed G'L]ll],- “” }{y“i)
say, when it is not at all necessary. In the general n-action

G+ j(p} rules, we need only have the condition{). I:LIH{? iff i iﬂ or 40 .
. J

Now we have our i =cell 4

-

Output  u, (t)

Input a(t}efﬁ,ﬂ with resp prob Epu_, qu's
State 'ﬁi{t} = Pr{ u,(t), teN)
Transition ﬁj(t+1]=ﬂj{t){1-g j“}]+ ij j t)
@ S | when s(t)=1 and ui(t).
It }=Lj(t} when s(t)=0.

and b [i.] =§Ji{1r} Qii (t)=1.
gij(u}q,o it ll 0 nrHj v 0.

eg 04400 = XCigi i

.. A R0 with equality iff q = c1.
- o

We now determine conditions under which ai =cell asymtotically
2.5. picks the optimal action. Then we shall have the complete

properties of an isolated learning éa » Wwith its set of reinforcement

rules.

1.4 Comparison

We shall now prove thaet all rules in our non-linear family
are at least £-optimal. In the literature, such as the paper of
Sawaragi (1974), each rule has been treated separately, whilst
the ¢-optimality arise fundamentally from the comparison theorem
1.4.5, proved through a series of lemmas, This is extended to
n-actions in 1.6.6.

We define the operator ugm'ﬂi('h‘f [’f‘[ﬁ!}riﬂ]'ﬂﬁ” , first

introduced by Norman (1968) for the linear rules fj (i) = % = constant.
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Theorem 1.4.1

It ‘jgﬁl[ﬂ.}-‘ ?f{f:";f'[t]’l ’ﬁl[ﬂ'}:h‘} then U,gmjﬁ'l’ %H']
and if J‘ﬁﬂ] is continuous, it is unique.
Froof.

We know by 1.3.1 that 1im Ilift-lé 50.1} , and hence iterating

by v e o0y g (] Ly o v
the result from h‘l‘ un;{ U,Lm u“z‘ u(?’ 2’

n [
Indeed, if f'ﬂ.j,g, for houndary e 30,4 4 then ':.,n uﬂ'hjr]’ ,d] ()éll]"]]
easily, by the same argument.
T
Finally, let g be another solution to Uagjﬁ‘ / which
is continuous. Then hm'i I J pu ,-_;TH pi'we also have |m‘i I} B])I ﬂ; :

(EN
and this gives uniqueness. We could write this Iunda.mental equation

more concisely as A ;rﬂiij [ﬁ) = O : /S

Definition. 1.4.2.
A function Y (i) on [pi] with Y| ad ie§0.)  1s
super-regular (sub-regular ) if 'f’(ﬂl}:fr (£) Uuyih) Hﬁﬁlﬂli-],

( 1.e. NHis[()0)

We may find that uﬂi[‘l has no continuous solutions, in particular,
if the rule is optimal, we have ﬁm(h.‘};l [1]]’ i,:’ [ﬂ* J] y {?IIL.'}'Q
To prove that uﬁiﬁj is the operator for an optimal rule, we
A (5 A
construct a continuous sub-regular famil:,f ']%I], with ]-m ii"x"'J ’EJ,F; :]|J|
S0
the discontinuous limit. Then since |,.1 rj-'r; l? 1,-5 , the
LEF
sub-regularity u"‘]b 7 || ensures 5'--,"1 gmﬂl“' The sub-regular
i

family would give us a contradiction if we asserted any other

solution, apart from Fff » 848 giving the absorption probabilities.

Now we prove the convexity of Fﬁfﬁ; y for the linear rule,

We have uﬂ ﬁirj'r'J s "'iF:*' ] {]] i L \? THI)‘ hqp _‘Tﬁ‘}

where Teﬁ =(1 -@) and T W= TE“ + 8 .
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or Wﬂ] o UE nf ($(17)- u])’r H,t{;{(ﬁ'{ﬂ] 10
with ¢[] b Te §00).
and also define V: by,
Vﬁf {?:n} : 'Li.rﬁ.f ||.] ?[Hi Jl, f J
with (L0} Ui ).
Lemma 1.4,3.
f]": '\a is monotone increasing om € [0 tl
Proof.
Take | as any monotone increasing function with <h” s?q)': .Js ﬂjll'ﬂ
then we show the same is true for | and henca l}g 288 lim H*P} {
ooy - gl Vgl Vieg]
?“f ¢ ”] l\I’ ¢||; 20 (*)
where * follows fram muuntunicit:r of ) and the following:=

Vi W Vs gl i) i W JPI "hlﬁz *;JM( i')- 011 :"}

Lemma 1.4.54%.

(T;IIJ." is convex on ¢ [0/]
Proof.
hssume g, q, j; as E{gl-l at g, =q, «
Then we take ﬁ convex and show that Uﬂ and hence }; is convex.
Take 4/3?{} At '—‘J . Then for "’I* y ey
:‘1-"!¢ T g vlﬁlﬂ - U;ﬂ di ";E,Ir ;V ‘?]u if f_',?V (? Vﬂﬁf‘_d @ {HH 75;]#".
ZGJ'U [p“ fgu @ "- lﬂ"i* ""/PL ri'?l” by convexity of
*,{Ui“ @fl ] ¢ ;'5 Uﬂ- ¢|" |- !-.“ U;. }fs yi".' 5'?"' pj” J ,la h:" andl 11:I:aarifty -::f Tj.
:J.rﬂ .'ru;,""ui")[‘i‘;{i_hh,i"ﬁiili'}}f o 55}' 'Hharl.ﬂ éf ;}l-j’;: = iid-- J_-z ?.ﬂli'l
0=, Lo - o) - Bl +4l ] “f (015’)- 4li7)- ﬂ{m"’).p(ﬁ )
5[{‘”@1_1 say and [, if ﬁ;«,ﬂ. or
616 g1/ « dlra- mﬂ} (o)

But T_.IL & TE" = 0 = const and J’<i' and hence (**) follows by convexity.

/
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Theorem 1.4.5.

1r B[l <O then ugmd’ -‘-‘a&.
Proof

We use ﬂf: B[E] and note that ﬂ{l convex gives:=

(Dand)- J{hj]jﬁ&' increases with a and [[[j - [[i-g)] /) decronses with a.
man Tyl -0 g, (%] - Byl - ﬂ,f,(fg - h(75l
%, (g,m(r.ﬁajam;-]]/ : (a; DA )
i (¢, ) ﬂ(u]]/ 0, (hli- f(57) HnJ)
: @}9 (U@ﬂv ZP) = //

ﬂot'ﬂllor!. 11416-
The family of 2-action Uiﬁ’r U.L. rules is at least ; —optimal.

Proof.

"
We have | g ana lim Uothefor </ d
.- lyfi| -0 =na lim Ugg o log <4,
we can always find ) 2 E«fﬁ} s by compactness and (|j,|,0 at boundaries.

Thus lim Jﬁj] J where we suppose glﬂ FH with 0 the

Uvo
learning parameter and FL J, the learning function. //

i/
IMJ then ]g? £ gé,, , but
this remains unproven. However, we do achieve monotonicity of LJ[T]

under gquite general conditions.

Lemma 1.4.7.
g fla-ﬁ‘ [T ﬂ;u y for i = 1 and 2, then 3&5] is monotone.
$1). 12 F § wets 3“ [T“ |<) fori =1 or2, then 1 ﬂlil 6f -
a[\f]: monotone | =5/ Uﬂ“] monotone |
b) @“:l non-monotone = {JMJ non-monotone
114) If E}LI.,H@:'\ then if % {T}i,]PO y,-,“];u] is morotone .
Proof.,

i) We assume 4{5‘1 is monotone increasing with (pfm g/ % *0 |
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and show that this is preserved by U and hence that jsmis monotone.

1 67)-ugf) - w ') 0 g i)
“ iy q gﬂfll,ﬂ"* h%ﬁfﬁ).
SO0 g g eme 120
row & (L)) i .-7 T T
! T o |
rooe il WA 7 (775 g 6] g 6154 < 7))

= (ﬂ?-ih\ug llqj'i' ¢(T”J]?Q by monotonicity of ;‘
Hence j&[“ is monotone.
ii) I shall just prove that ifT“ ‘Tu, with |, ”1 and
a! is monotone, then U¢) is not always monotone, where :T]T‘T‘.)“’f:'

sufficiently small such that T, || 'i'%?ﬂ is possible with 07 (16)<0

Define D,;l?r’”] &TJVJ IMJ ?l”r.g }Mﬁ),iw.ith ¢ ots.
ana so | (%]~ UglH) < (ui B, )M] -1l %r; g,ﬂ[u)s ﬁ‘i' f;!(}]-}) <0

i
and hence [l,ﬁ’ is non-monotone , since uﬂI}"i, J:ﬂ"_f s holds as for ﬁ .

The other assertation follows aj.milarly, choosing é” appropriately.

118) 1% l!m,(,u] lﬁ 70 then ’&u (ﬂ”:* 0.
ence O, (1[-le6fl) |, *Jen] lu)w / -1, du/”

< & (ilkotl); - %;, (gl

Hence ecentrally symmetric rules give monotone E{&.’H i %ﬂ. lfﬂ:] ﬂ o

The condition lg'ﬂﬁ'("r,ﬁ,]]‘!is necessary for Norman's (1972)
distance-diminishing rules, but this is only satisfied by linear
rules, with @Gﬂﬁ;ﬁ_sz}.g in our U.L. Qfﬁj family, It may be that
such a Lifshitz condition is reguired in order for the method of
proving a property P carries across from ¢ te l‘# and hence to H v

to operate.
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More subtle technigues may be reguired to prove the more general
comparison theorem.

The comparison theorem 1.%4.5. says that the slower we learn,
the more likely we are to follow the expected drift. This is the
converse situation to gambling in which the optimum stategy is to
play boldly and attempt to go against the drift as in Dubins and
Savage (1965), In learning we wish (drift/diffusion) = rfﬁl? #,
whilst in gambling we need I V() , where f{h}w{m Hﬂ],—:g gives
the diffusion approximation to the process, with?[ﬁ) generating
absorption probabilities.

For the optimal rules in the following sections, we attemnt
to learn very slowly near boundaries, so that we achieve asymtotic
reflection from sub-optimal boundaries. We are then absorbed only

at the optimel stable boundary, where the drift is with us.

1.5. Poundary Behaviour.

We shall now partition the non-linear U.L. rules 6{ to
obtain those which are actually optimal é; sy by examining the
behaviour of BUﬂ near to boundaries ﬁiE§0, 1%.

Definition 1.5.1.

A rule has boundary behaviour . at |;=0 if 9[]) )aa I w

1 shall only consider rules which can be classified according
to their J-dependence, thus eliminating unwanted pathological rules.
The following lemmas give strong reasons to conjecture that ¢i=l
is the transitional class occurring between cL?\ optimal rules and
0¢2<) ¢ -optimal rules.

Lemma 1.5.2.

The continuous time deterministic approximation to ﬁ@) rules

gives convergence with exponential behaviour in t iff d4=( .

Proof,

we have A= (hi{l‘l'll(ﬁll'(ll] and w.l.0.g. put Q’M @ﬁ |JI
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Tif(1i)t  we geael aﬁs(fl 'T’l >0

Then we take deterministically J%'al' = g?};‘]-—ﬂl‘ a)
Now when x'H i.\ (“'h]'ﬁ or 5 Tﬁl‘a = [J/E”' a}'f'ﬂ".r
Hence for ﬁ?L “ ;Jl'i = Jted and X» [- m’t{.]
Whilst for P’l .63 -;l:- Jf”;] or i"‘l;fe'ﬂlx’f'ﬂ e)
Now redefine time-scale:- |7 J}f.’fr and put ﬂ-‘ f"x
Thus Y= |- Lf,;,.!x,., A7) jfﬁr]‘ power behaviour
X = J'_ E-f 2D K 3‘1 exponential.
and in case d|l'-.r| » We obtain HT’J . //
The linear case is special due to § =const being distance-
diminishing, whilst for o»() lim G(i|=0 so such a Lifshitz
e

condition cannot be imposed.

Lemma 1.5.3.

The continuous time stochastic diffusion approximation is optimal
iff .,{7[ y and is conditionally optimal for J:I
Proof.

We solve d Ea ]"flv{' ﬁnJﬂ‘ﬂ where a(ji) = expected drift.

and b(#) = variance.
Then ]|~ a(nfmha,l r'f -? |
l'?||i1 = cib ]I.u m f i} E!!I‘Il[-ll"ﬂJ = -'?_, !:Irll‘ﬂ]l ffij } glﬁ?Jﬁ."IJ"';j:.

and for E.{F%J small put q‘rﬁ.!rfl-gzi}: T‘f H{j} and this will
not affect the conclusion of optimality for 7
Thus rj | = 2afi| . Soth o ik f‘f | /
; ] ?;i(ﬁl ®  aiffusion ‘f Ti 9{“ - * fuf,g.tﬂ}
and for g, 7q, ( so that lI = 1 is optimum) put ] f‘ | Qli
|‘

where ﬁ.llﬂ]:g“n] Thus ;’ - -211 and ford! we put w.l.o.g. ”{}- Hilj"j_nl
4 T
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4 [ al | | \I‘th
T R N AR N W,
i \%é J =i j("'J d L!j ['ﬁ A

g A i;@:‘f“ w il=i =0l
[
/ Ak Ao ath )
Then for 4=| at both boundaries [f{);l; S'I l’]:_lr‘\ Ji f‘ (J'H)“ i
b | |-_ i ‘.'- 'bIE' -~
Clearly when 2!1?:] ﬁl[.‘}a I ﬁ]‘ );’-f-lj and diffusion is optimal

AT
since jf’i‘-”‘ % 1s divergent iff Jha| .
]

wnilst [R<| gives ?hlé! for jgl and # is monotone T i
we have ¢-optimality.
(Note: formal bounds for 4=l will be proved in 1.5.17. )
Wow since j: Ifl-'.-l JIT is divergent for p{:rll y We can easily verify
&ilf.\‘?-] for x # 0 here also. Similarly j: !ET“' ﬁj,lf is convergent for

Jc] » Bilving ¢-optimality,

Where mz ( e (d ‘?hf’t"l JI.Jq | g g | 1= sestly fomd.
Jie L), s /M 'I"’FWJ'JJJ

r
Finally, we find this diffusion limit for <) .

gt Wil hE g

: . {1 - | X
And boundary conditions give ¢”‘} .;{14 p ﬂl.\J lh]

.*"If'
[U-¢ //
Horman (1971) proves that the discrete time glﬂ converges

weakly to 1#]:11 for this linear rule. The theorem reguires F!Iﬂ]
bounded and hence breaks down for 7] y when i“[]'ln]1 ’T'.&" at
boundaries. Vorontsova (1965) proved a result similar to 1.5.3.
for a family of rules with penalty and reward reinforcement.
However, for d<l y such rules cannot be normalised to give
uniform learning and thus our reward-inaction scheme anpears the
more fundamental. I shall now state a result of Norman (1968)

which gives bounds on the discrete time absorption probabilities

for the linear rule.
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Lemma 1.5.4,
i) Let éﬁ.ﬂ'(ﬁlt [|-e'z%)/ﬁ_ﬂﬂffn] then "] +ve y and z
such that ¢,9 < 755'14'5 < éi# ng e [ﬁ. I]

i) s (-0 where a,7 a5
Proof.

Norman (1968), proves "‘f’“(]]}rfwé can be super or sub-regular
depending on x, and the result i) then follows easily by noting
that the class of super and sub-regular functions are closed
under addition and multiplication by +ve constants.

For ii) we have {1-5-1{9\"' and hence also hhﬂ;fﬁl-; giving { -optimality.

b0
’

In the literature, such as Sawaragi (1974), we find that the
same method is applied to rules of classes J7) . However, we may
observe that Norman's g?”ﬁ\ arises precisely form the weak convergence
1limit of 1.5.3%, which only has exponential behaviour for o=l , as in
the deterministic solution 1.5.2. For oj;ﬂl' y we should only expect
to be able to put tight bounds en {Efi‘l'ﬁ'j by using the weak convergence
limit g[ﬂ appropriate to it. The use of the «=0 limit for .70
rules will only give us ¢-optimality, which has already been

proved for all &0 in theorem 1.4.5.

Lemma 1.5.5.
The 1lim Pr( attain i)} before absorption at i, T!.l'u\'-%n]usins ols))=
when oz| and q,7 a,.
Or, concisely we write, In‘" ﬁ‘ i ('(;, B’U [l‘;]::’]__
Proof . =

ﬁ-ﬂﬂ'fl » 60 ¥ 211] % 55 (l ) Ig,, with a’['ﬁ! .H mieln _;)
: E'ﬁr) 'S‘lh e[y 1]

But %,} [ £ '“JH["i fl by 1.4.5. as ﬁl’“I 'm

will hold w.l.,o.g. ( If E‘!"ﬁlll oscillates near |i</; we just bound

Q[‘M suitably above by some [ =comnst)
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Then by 1.5.4. a;(r

{ \ 'zﬁ-’;. #
e G (4l] o T o o
and ﬁih}*ﬁa’ﬂn)“{;. i’n}i ¢ §/pt*  and hence,

' -2y, ] i a-:)
sy (W80 1) » o~ %0 - |- o [207)

and him hr (-E nl"':"':']),_.g when o/ ?| , and hence result.
nfs 0

This lemma shows why we may expect asymtotic reflection

{ I} % J . E‘i‘.:@m for +ve z Y] n.
ﬂ“ :

4

from sub-optimal boundaries. For o <| y using the diffusion limit

and weak convergence for J=0 bounds, we can similarly show F?.,"EI l:ﬂ,ﬂu}ﬁ,,):ﬁ'
giving absorption at sub-optimal boundaries. However, for o) 5

we can obtain no such bounds, for non-rigorously, we can put

-:\"i] in 9';1.:'| ﬁjl to obtain only pﬂl-m Hﬁﬂﬂén\ 2 J*EF El:w = const,
which demonstrates how difficult this transition case really is to
understand.

Definition. 1.5.6.

If at time t we choose actioni and at time t+1 we choose action
j #1i, then we have an alternation.

The following lemma shows how the alternation concept is closely
linked to that of optimality. However, only if we exclude the
transition case J':l y is % alternations = nec and suff for
optimality. For the transition rules, we shall prove this to be
neither nec nor suff for convergence to optimum action, since 1,5,17.
will show ci:| to be conditionally optimal as in the diffusion.

For the next lemma we consider boundary behaviour as 1'“1"] &

We let G[ﬁ;\]“{}{l'il.’}a 7] ﬁ;f! which determines absorption behaviour

whilst 1.5.1 effectively defines reflection behaviour. However, after
1.5.7. all boundaries will be assumed to have the same d-absorption ang
o -reflection behaviour, so the distinetion is only of mathematical

interest.
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Lemma 1.5.7.
At boundary i, ﬁ{I!:)-D(I,P-u]f' as i]ﬂ a
i) If a<land Lin iilth:l then Habs Zp and if <! at all

boundaries, this is strengthened to {4 <» .( And indeed all moments
are finite.)

i1) If 47| and lim iff|  then hihser .
iii) If «=| and lim L)l them fahll ifs ei‘:‘.‘I , Wwhere
9 = reward probability,as usual,
Proot.
We define i[ij| =Prob( We always choose action jl iJ'lr} =1J 3%

Now we immediately have the basic recurrence eguation,

fi) = 1 (A ) g0, (5;0 96103 2
and hence erﬁj], (|- “-ﬁﬂ’?]*p-ﬁﬂ:l h [ﬁjrﬁm[f‘;}i}} with EIiJ
I shall now omit suffixes j and 1!. and write E’;:I;]‘ !-r]'-f}/{kfﬂll and Tf],i . fligfil {I"'I'f).

z fi F H

mae  {f] * (-efu) L(TH) - 18 ¢ (1)
where || '!iqu:l}’f since l;u:m{J—i,]=g iff 0

N2
How {J'ﬁ] _ ol
i) ™ g

;]I'?E we can neglect #{Jaﬂ} terms, except in the case «~| when

i = / o J'.
|Ir|'j ‘Jrl = F‘“ ilf'h’J' JEESR ) and hence as

we must be much more careful.

Note that |-¢fi] = Qn/ ,which is a transformed distribution function.

(i) i N
Now for = , we have }[ﬁ]?{l iff f (j-un}é.ﬂ
=0
We prove convergence or divergence for ¢ by a comparison test

A
with f-n“ + £ chosen appropriately, and ii) follows immediately
i

| - Al
from i). We use the condition [[jj;0 iff "5 ¢(T"| <.
n=l
i) a) Put -l-[,l’I-Jﬂ,#* for some fixed /27| and so Q[TL]”B(}'LF

Define }7.-1"’ J".'nfl';}f’ and so l’qn * i'nm" “ﬂg' %IHHJIF
I b,
bﬂu £ Jﬂ"g ﬂ 3 :I“lg)

®) Oy Clawied E Probert - YAZE Interriationzl €




A
We take the ratio h”,f S [ Q; ufu@ whilst ﬂ"'":_f s i_, " ]r" I'{,-
tJI'Irj jr”; "..;"':m]lﬂ' fl
But f‘rn#«'ﬂp for l.-g, ?J and if ,,;Ig 4 I "‘w’ﬁ‘ 7 5"#;} i for some |} ; ﬂ, "
’ fi 1
[

Hence, since the above holds for any ﬂ”]l and we can always find

l,L?] 2 a{F_i-] when 4 <| , we have(by Gauss Ratio Test,)
o

1< = f(l-ﬂ“) <, and hence IU:-HJ 70
Now since n:he process is markovian and l'ﬁ,h‘]'”as -EITI s We
must a.s. have 1y s.t. for t71, , we teke only action i and #m'f‘s Eﬁir"_
b) Now we have to prove ?i}‘g']' <p for ﬂHI at all boundaries,
and indeed § ﬁ*ﬂ'ﬂ'taﬂ :
Prob( at least 1 more alternation starting from next choice) el-¢
where ﬂ}rm ;ln:ﬁl}} 7£ 7() which exists by continuity ufi.';il-] and ]_-m f--;ﬂ,)"!,

1Ll
Now take successive alternations, starting proces= again at
gey 1f r*® alternation occurs at lig-y Uy =

fi P
Then ﬁ- (ﬁﬂit ??r] < |I] El.' _r'Jﬂ ( allowing possibility of alt
L] I 13
at n, n+1 trials)

Clearly also FI" {#ﬂﬁ 2lr [Iﬂ[} ﬁlﬂy Jﬁr]( (}' '}Ir:ff'
5

i1l ﬂ Sri f]' }f
Then gﬁllT * ﬂl 31‘ { 't”{- < o by comparison with G.P.
2

{1l N o, zs-
since ﬁ '.} < il f}“ i {Jf)
Also given 5?5"3:1. s.t, Fr{#al’ ?ﬂfliijullmts by above, and hence

we prove rigorously the last statement in a)

5
Fi e £, {
Also E’{ﬁla]fl 4% fi ¢ (194 2 ‘i bl [ (I {]/ £ by comparison with G.P.
f where C €£‘+ /.
ii) For 471 , we find prapy ] with $% 4= o, which

is always possible, and hence ﬂf“‘liﬂ):.ﬂ‘ and 'G[L]:Q 4 J?mj;'g';p.
fize

I'Ill - \I l Ir \ "I,. - - * [
iii) We put UTle giving I"|-HI-| ;'Jl'f?"‘l = ffl{ n
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Note that in this lemma Ty refers to action i at trial t, since
we are considering boundary i throughout.

i) Then i[j|zp iff _.g’g!r,'ﬂ.
F

We prove divergence using the ratio test; comparison with ‘f!-’n <

Define ﬂl’ |ur]4‘,

We just compare the tail of ﬂl. with bﬂ-!{.‘ and by integral or ratio
test; tail above lj’ }f“ ==; divergent

sl tad] Stelotly helow T}" =7 convergent

Ko ki) /fephu) = (B 060 /(- glye -5, 06
= (-06] flpr 44 - 0T
= (10 /(- 7006

Thus G:T""“-r.ﬁ (g polic) /'. 9[“11]

But we have QGJ}) ‘:ﬂll:i'lij.i. as “tTJ and so let E”'i‘ I! ”P]
Then Q{ﬂrﬁr ﬂ:l ‘Ii"rlli'F“lj and u*".ﬂr - IF ﬂ“ﬂr ﬁ[j,'-ﬂ.r] which gives
i

divergence when ﬂq '

Thus I. |.||}ej iff 91 7| and iff nﬂlf P 1

Remarks 1.5.8
a) For the linear rule it is actually possible to express
alternations in terms of (|j| as in Norman (1968). Ve shall
Eive an easier proof here.
Lemma 1.5.9.

For the linear rule -,l,rn']‘ (2- Qfﬁj" triz): i - L-'[ln)

5|{; f.).

and HMU | -0 )H |,]"J.-J ET when :?e:fl
r}J.ll & g ‘ﬂ' alternations in response ‘ “lei;ﬁ
Proof.,
&F}\IH] o il,ill I"I:?_. QL#. *YJ] is easily found.

e A ¥
and A]J E f"“l' "Z]l-'*'l'l.! enables us to substitute when q, # 9.
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and we have ﬂﬂﬁil-ﬁ and ﬂ’(ﬁlj is the unique fixed function satisfying the
Ziven boundary conditions.

So 'th]:- ngi E[l.n fﬂ.q 1} W cﬁm] where ¢ = 1 from boundary values.

If q, = g, then we find ﬂii,ﬂf 'Efll-‘lﬁl
ana A% -2ui, (-8g)
S0 again we just use uniqueness of Ih}far result.
i
b) This method only works for [} =const, else we get non-linearities.
However, if il.“-"’h' g['"'-:.,ﬁ'li..-ﬂ‘f then }-’LNH{"‘"} on putting W’L’Il)ﬂl:,l i } 1[!,
Thus ag N9 N=.2 , 47 whilst at the transition case (=] ,
A<p A«
we get -'f.n. Z‘fgili{,‘«ﬁ".] which gives no information. This is a non-rigorous
argument and 1:5:?. is still required to give tight conditions

on [:Ir_;s.‘! in a fully rigorous manner, and to deal with the subtle case

of u{-.*l .

Lemma 1.5.10.
il ) = f ot P
[,,!IH:IT' when G{;Jﬁ 'LT|.'J‘- rAl) Wil ¢ il,'fn:[.
Proof.

- i f | / "‘..-
vonave  1[fi) = (1= "ajpi)) ()
. i l],

e = ll'l" b rl ! - "" -III ’lﬁ ] Il""l’l;l
Thus if 1,7 1, big)-ifi) 2 (T )= VL) (= N f'\l

P T- ! A=
and J{j‘j': l‘]‘] 'Ii. EJ "'-"?I Iyl 7 '!I!u .

- 5
| i — | *"' rh 1 1 | i /)
Now iterate to get L‘._'-l, bill,] 2 (L TIJJ” ,,“1.“:‘,' .I .’I-_”h;_], U
T r:d ||,"FT,|‘..]
fence LaLli..\ 1\
L

In future sections, we shall consider rules with the same
ol - behaviour at all boundaries, so that the two definitions we

have used become equivalent.
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For the transition case iii) 1.5.7., we see that it is possible
for Bci: 41-‘.9?1 and yet in 1,5.77.we shall prove that the rule may
s8till be ait‘.h;r optimal or { -optimal. Thus we may have an £ -opt
rule with #a’.'rr..a with finite probability, or am opt rule with ﬁd}::'.’a o

fr
if 9%.Hf'cl , then we shall also find ;-opt rules with #ilZwm .
¥

Corollory 1.5.11.
If .liL[I‘\I']?D and 3) s.t. {J;a‘:' then the rule is at best
¢ -optimal, and we say it is fh Llass @Hf .
By comparison theorem 1,4,5, all IJ.L.B:'H rules are at worst
¢ =opt, but lgﬂ:ﬂ with finite probability we only take sub-optimal
action i. Hence all rules with .dq.] , 8t any boundary, (since we do

not know which is optimum) are in ﬂf , and alsc rules with

:-L"'], q’."!f” at boundary i. A7
v
We must now consider those rules for which n',ﬂ\lfﬂ at every

i

sub-optimal hnundarﬂy; ti'rr?il- IJI';,F:,FI' « First we prove that the class
of optimal rules 'ﬁ', includes those with o7/ at every boundary.
Then for d=] y We delineate regions which give conditional optimality
depending on [ and H"{'ll , and other regions which are at hest,-ngﬂmi,

Although the class of rules d:| ,with its conditional
optimality (1.5.17) would not be of great practical use, its study
does help us to understand the behaviour of <#| more fully, as

£ -opt "fades" into optimality. Both have fundamentally different

workings as discussed in section 7.

Theorem 1.5.12.

i) The class of rules with o7l at each boundary is optimal.

ii) This optimality is independent of the behaviour of Eﬁ}in

fipnitely many compact subsets of I*-'-'LD'JI]_
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Proof.

We construct a sub-regular family ‘hEH y Euided in choice

by 1.5.3. ,i
Define q’isl'-ﬁ]:‘-' rT’hg L?n\ﬁ where ﬁ"l’hi'{’:]: Ju :M: l',Jh + JJ Ihl'lll J ‘\,33
‘"-“hﬂlﬁ'. " J
‘i e oad
and where Ir]\!]'l' : LJEF £ h."‘ij ;l;'ill.]dq] [ .!.'ﬂ ‘11

e i~ oy [_25‘“‘1"‘ Mt ] TALEA|
| TML t“"F L /iit.,] Iu]d ] u'ﬁ l} ]]
Cur ][h ”I is chosen, since at the boundaries {—‘I:j.] y it approximates

the integrand in [?0:"‘] d E,‘.&F J Jnﬂ ; JJ'f 4 il"" J:Jl' ,lu
1 "‘ ¥ v p

We truncate the integral at X8 y to remove the divergence, and

as vl , we obtain “;h '].I"’I‘ B’B* '1] E‘l on |0 . Our task is to

f it

prove, st arl , JIEJ ,,| -§ ':,I.. .;E hrl_p:[and hence ﬁ;l R ﬁj'.* .i“_ 3.
(for some nrh" ;0 for every ; ).

Lemma 1.,5.13

\ L |
rf'{‘h'.]: E J;| is sub-regular for all &.‘L} + when g, 7a;.

Proof,
It ¢ J“ ﬁzﬂl - ik (gg)e0
' /7
This holds since FH;,;] “l  is the solution to i&z Iy ? when a, = q,.
Lemma 1,5.1% o . _
?,m-;a.t. “1 = :_IJ F]M Ih":J'- ,.:,:';‘jj‘1 -!T;J-.I b ,,,J./l

Proof.
Here we formally prove %iﬁl‘ﬂ' is sube=regular, and most of the
theorem arises from this lemma. We a'pplj' the E ~truncation later

so that we may write u‘ﬂ'll “H ﬂrj'u| 2 ﬂ I i -'n i - “" TI ,I when Tlﬁl?a

We partition 1:[)i) into -84, T,7[¢ lc] i L7 (1-¢ ol

i) Take F‘I:l: ';1 } =.rj a compact subset of ‘[Jﬂ.l ﬂ .
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Now in trﬂ Eh[ﬂ\]—? :I and IJLTD 1'11"[". Alf & :u; J[fi h Jﬂ‘, B 'i, ’[Ifj b,
W b

By compactness, we can use a finite open covering from any _-
open covering. 5o choose intervals 51 st 3 k-, and I;R )
on S;; then take a finite covering of I, and put k¥ Mok 7
for i in our open cover. '

ii) Now take Iy*[0¢] with g<l

"|.P

p [fl 7 I{"I Liiif =il ) h—;LU]'qt I '|| i) 'lI-E-E;].
2 y / il 7 i
f 2% [ L;T“ T J - 4, E’.‘-F[kﬁzi:am}dﬂj Wl Ol o, ;.
O, H‘ WA [ fif"ﬂ;‘"(;'—ﬁﬂ," 2 (egir ) J

i 1’)’ Azt ( - a2 |
%&h!?[ﬂf ln l“. Qh"ﬂ e J gl- h‘ _&.

i\ f’-— -1 _ a'=i K 'II'- (I
Thus phlnj'iao iff Q-,{'il 7 Cxp [’1 Tl | TR Etﬂ,'l

i P =i Vo=l .,ll‘_ﬁ
where 6[5}3 ([TGHJ"HH:“T 3 “"E’Lr 0, )

T | £ r L =%
Then put K3 [ﬂ.ﬁhli to obtain E[glr' | SR,H I 9a; 1r.|

et I _:' 14 / ., =i A
B(i) - Ox (-1, 'wﬂ- 91 dw“f} ‘Jif—n:’} ]

7 Bh Wy il J-nl FJ @
by some easy analysis, where E}{ﬂrﬁﬁ?h‘ s
u Lot = [ ft .
Thus L )IJ if kg ]] l QFI “1] (fr,_ ll G‘M]IZHJ : ﬁgki iJ]
h<alt),,  Wit) b ieloe
or Lj.. ", E’H'{J iﬁ | f,: | f

But r.h.s. 70 when 94 ?qE .gn' and is strictly bounded away from zero.

#ilso in ]lm h.-_ LA _ '[\1 ) is resulting constraint.
1 8 | I 'ﬂ e fhl
41,%3 L,
Hence we can certainly take ['*- mn 4 m . }‘D.g'.{%h for £
'“ Vil suteicientiy smmil.
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| L
In faet if we put 3{1,[:95‘,‘“ ol D.":n. then we ‘have the far weaker
2 ¥ l_ F ;.
constraint ‘fr ) BX ”z‘ﬂd. - "-t nf)'ﬂ-'i} ﬁl‘ﬂ on k and s0 we
(7 F.‘.. i i
L
can find h?ﬂ e mﬁ on I‘I for M,

iii) Now we do the same caleculations for I and by the

symmetry of I-Illﬁ1 we find ,q 'ﬂHi !bqu" 2] for E*
Pl
L
sufficiently small.
Lesm! fid1x 1aw) !_' r-". ;
iv) Now take *Mifl [k k" k") to give lslij20  on 1.
: /Y
Remarks. 1.5.15.
a) We only required the learning funetion for I"F and 13; th
compactness argument is independent of E‘{-’I] .
b) I shall now show semi-rigorously why we achieve ;".;afr' in
- | T
ii) and iii). Let [~0 so O|~0i
T A fi \ -
[ )20 iff __;--[’1 [ e 20
[}ill:}‘] :’IEEF I u I —l Flllrllli I
; ! = fa=l = voi=f| [
or Ok [([TRI"- (W] lfen 1ov] <9y .
i 'L J'la' L: "I-I J- JII
Lo AN fer =W
and as L]:fl',] 7 -1[1:,-’.] we have J']hﬂ ‘£
- - = - - &
B.F . c{!l then [‘ ”,_,] -Ll I-BLIL: 9 LT lu' ||1-|'~J-|-
fraY -~ i v e
Then El?;lﬂﬁj % {‘.-i‘. = 9 qu ki,
| r
el The function fh.lyﬂ for e,
Lemma 1,5.16.
a1
14l T |
The family -, | are sub-regular for R /! , sufficiently small.

Y i

B : ¢ i L .

Given ﬂ{hjliul s.,t. for I:"h"k‘ and Q-..ijIH"'I we have UEIEJ I}H"]'-; b ij;h'“J.']
Froof.

We use 1.5.1%, and note ? is sub-regular for ﬁ’.‘d by

W
1.5.13. We must be careful of the transition at ‘!.._=.s« :

a) Tiiod 0, v) 0,2, Th2 .
1 : " o : L L-’ .I
Then [ il diy 7 |TJL'.' Uil TR L AR -

P

& Oy Dawviel E Pronert - VaZ8 Intsrpatonzl €




36.

| {'{:u in both a) and b)

S0 just apply 1.5.74. ii) which holds for ¢ and hence ¢ , sufficiently
small. Finally, if T;[.-_.?::j y then 'F'.:“;H] is sub-regular immediately

L - L LS
by 1.5.1%. since llﬂl'ﬁir}l‘d '}rﬁ I?hlﬂ) on ‘I;ll‘?j « Put H‘.h which
we found in 1.5.14. and just choose d(f] €  we used for
partitioning I.

Hence gh“l is sub-regular on I for (ck<)' and .[]4{4”&'} ’

4
i) Now if E\{hl*l{][h;“] as “{,f} at each boundary, we choose a
family | h [) which are sub-regular on I and take ém ih}mﬂ
o : b0
for (¢g«), and Uiﬁ .
[
Thus .m lhﬂl" %t’u [il “f! and hence for .| , we have optimality.
ii) By remark 1.5.175 a), this optimality is only dependent
on the behaviour of 9:.! at the boundaries Lg‘{:! and r':c’J] .
4

Theorem 1.5.17.

If J=| at each boundary and rule is of the form 9{5[:95&-;}. tI:?ci”

then:- a) It |2 0 ;ﬁf ‘Eﬂﬂ then the rule is ¢-optimal.

( and with more careful analysis we obtain 7 §7.- qi‘ I l,rf} )

b) If §<| and § 4{]'%,:_[,_] then the rule is optimﬂl.
| 2(1+% )
i

’H"%’N

( and with more careful analysis we obtain if
For the conditionally optimal transition case, learning is
due both to boundary and central behaviour so we must assert the

form of E'Illul on I’ [_l]‘,]] , rather than just at the boundaries, as for ol7| .

b .-
I shall prove both a) and b) using fﬁ{;] = J fl':i']h [;IL! -

(] I
in a similar way to that in which Norman (1968) proves 1.5.k.
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First,I consider the simpler to prove, b) for which I construct a
sub=regular family "f’(\ with 1| , and lim 7+ [‘]; },]
Ri% ]l Kt i fﬁ

g in 1.5.12.

2 mﬂ hm g Lr L~fﬁ . %hﬁ;,[??Tﬁ

and since (_';I]I is mnnutuneyb on {ﬂ J ]
17§ Oiti, [(-i +0a1-3
” P‘I‘hl:\ ﬂIH % nL [( hf[:—i H fi‘“ W [ il :;;H(l u]i]l
TN il |- g, (6
y Bl Jx,—ﬁ; [ I J fw: il ei J—GLZ;}] l

3 Qﬁfﬁ: ’_lffh ﬁﬁ'l.] with fl, =1-1T,.
Now we find min E{u d

TH

Lemma. 1.5.18.
o 80| =

Proof.

and this is a minimum and is unigue.

i

’rdii' H« ] 8,1 'q z |.f§h‘= r”ﬁ'ﬁ }
k-1
= 20k (1-0,) [ ) (0,

{Il JJJ,',.JHI.*SII!’ ]“ 9.: u J

aad JE..ﬂ ife ¢ -l' and dﬁﬁ}ym?a. a%ﬁ]u ¢ <0
"2 g

7,
. Vi
Hence we ensure Ugl';}filﬂfn.‘é]?a or :i;u % ;{ i Ea]
Thus U< fr{‘fﬂ /(J r;!— with e"f[lr%)_
Then for 0« 1 ( 'lil Z and so we need satisfy only,
ﬂd ( g‘fi ;'I{ 5 E‘aﬂ 1 But [T'ﬂ'f*] < :fi' and hence

fi 1}
we get b)s- <l and G‘u* flf;I]-'r}’ rule is optimal.
The more precise inequality will allow us to give certain useful

counter-examples in 1.5.20.

Lemma. 1.5.19,
Given any El‘-!, , and hence Qiﬂif ' 1;]11;:1‘;)l 990 95 s.t. the rule

is optimal.
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Proof.

B § fit:l::]‘ LI'#D then we need only satisfy l{ﬁf‘_-nl z0 which
holds for all real B . Clearly if ijﬂ and a5 is sufficiently
small, we shall still satisfy the inequality 1.5.17. b}, in its
strongest form,by using continuity arguments. lNote [ﬂf&_-!r:ﬂ iff WF&._ .

/o

ii) For a) we prove that :H:t'll s.t. b‘h ; i’;‘l "5!" then

li) <

l| J

iA [ |"-|1. -'
i 5 dg H”ul'r is super=regular. Thus |J:;2ﬂ U hn] F

and the rule is at best { -optimal.

| ot P
Again we use the argument based on partitioning. Tf {I} 9;} Ilf ii’l I'JfJI_ I‘,]I-'J'd

Consider I « We find |q B.t. "I‘ is super-regular on I1’ for ]?I'i?h

.J’i ) [E
ﬂlan' = 'T ?H rl|%;f-|: J:l = QHI':. i: 1'& Jj.
oy L Y T .J TR
< ;” hl [.-:{r.l. lr Ealllhl ‘_.],I _sl:;f.: HH Slr‘l J
me ¥ ar g, [g.‘,-, (-0 - kfid) 61ty MO )
= [k [ -\
“I' "SI hh'u'.!.

| | |r' | o
or \J UI "y ! 5 Ei.B i.-'l‘-l” ¥ I"f"'; 'I'i L‘.’{'-#-]

" L i 1! -,rq‘. f .._l'r [ |1I 5
or }j?fln '..-"i“' Ll" | {Hluj el l”h I'ls'j

Now since | can be made arhitrarilr close to Djnnd k can be

arbitrarily close to 1. 92 2(l ‘i‘ IE} will give [[F<?¥
and for g‘"f, 'S'?éu' {;TWI for (1-1:].,5[ sufficiently close
"
to 0.

/
i {

Further,we have Ffl?l 5 ‘f f‘l '|' __*»9 EE ,Iﬂf__* \‘| on taking further terms.
s i

A
and if §< we need satisfy only 87 (I 'f‘vf | .'I"-b'ﬂ-*':ll
] i 3 .

or for Y«  (since our binomial expansions hold only for f<l ),

we get more precisely B < ﬁ*iﬁ{ ;_,'ri;:‘_' ’ f,\ gives { —optimality.

Wk 1

It also seems intuitively clear that if §7<| gives (-opt, then all 0 5f

h}&?ﬂrgive at best only { -opt, but we need the conjectured generalisation
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to 1.4.56. to prove this naturally.

Consider I > Again, on appraximating the integrala, we get,

U/afk- ‘-]bh 1 ({ ﬂ ( .III QII*H‘,‘] ] lzﬂz(]l S;”J k-" ]
and [¥<¥ if ft,l],i'l" [rg;.r;,-lﬁ_rh}] <4y l:;'._E‘JII \ f“'l ELL['kHJiié { 5)

where £ [I-H H&IH\I and IJ: sl

ki
Then as for I,, we take k sufficiently close to 1, and.hére also J,
sufficiently close to 1. This gives qijﬂ super=regular on I3 if

Ik h =na |7952( ‘f'gb—l)

However, comparing I, and I, conditions:- fgj “-39,‘1" Hi‘ if H?%,r f'.,_qi }

3
Thus the stricter conditiom is that at 1,y and so we may dzsragnrd
that at 15.
Consider 12. Here we take k = 1 and use compactness.
! f T & z fi. =3 - FE s

ugfi] *‘I’M IR ] !41"' ,] QHJ Iy 1 fiﬁi‘la L‘?HI"QHJ f;ﬁ}r @f;"'gk,ﬂ‘)

and 'IH *; when g ?Lq{ ,.. “{.”1. g“”h?m
q - a0 =00 T I PG (W

or more precisely E)? 1{4 Qil / .{q;“;& 1 fw_ Iﬂrﬂnl = Uﬂ. !l.'lrg...-._ ,l)fa’gtﬂr]l

| .II : : i !.é
7 I | i - i e
or § 2“{' ‘i*f / Hi“"f'“i (|- 384/ 4 19 g Why...))
Thus 'u!‘,r«»'f' if above inequality holds, We must now use compactness
to relate =l to kf<| on [{ [-/7].
[ T;' fl=i| )=
Since llaﬁ| is bounded on -“I,_ (compact), w
i I S i &
have luTi'rﬁJi = lur}'k“i‘JTHil'J]] <€ for l‘r}n .'l;?f say, and || eIL
{ p i { f )
The ¢ is chosen s.t. (TJ-U"}H?EE and hence ff"h- Wh}‘t and

£ =
-\I"I IlII
ﬁ.'l 4
by compactness and with some d:.fr:.::ulty can be found to lie at

is super-regular on 1,. Now min ({Z“; ffu, Iﬁ'iw i ]) exists

the lower end=-point i,’(j . ( and ©® must satisfy the given

inequality at all times,)

Finally, we combine the results and obtain the reguired bounds.

¥
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We have 'ﬁ[ﬂ is super-regular on [ [ﬂF] ir 70> “'E'?]/ff'lﬁq;ﬂ.
where l?k?fh{li (h,{h:rhﬂ . And hence we have that the rule is then ¢ -optimal.

//

To end this rather lengthy section of analysis, we shall
consider how #altermticns relates to optimality in the transition
class, We shall dencte this class by &'5 since we have now proved
in 1.5.17. that such rules are only conditionally optimal.
And - ﬁeuﬂﬂbﬂ,_
Lemma 1.5.20.
1) 12 |70 7([-?%?‘\/{1- @,ﬂ axnd 9{':)=E‘ﬁ(f-f;} then
' ’
-#ﬂﬁs:ﬂg and the rule is £-optimal.
ii) 1f [}2671 and 9&’,?179?; then we may choose £70s.t.
gi<¢ and the rule is optimal with foll €0,
Proof.
a4
i} We use 1.5.7. and note that ﬂ_,g*_%-t! gives ﬁﬂﬂi:# y but from
1.5.17, the constraint on ¥ gives ¢ -optimality.
/ " Tl Y e
ii) Using the finer bound of 1.5.17 b) we have @ ¢ (l‘ i’f’g.]:_”* Efﬁ)f:‘fh ‘f‘?)
gives optimal learning.
But as flliD y we find Em,-é will satisfy the above for ¢ sufficiently
small. Also GT‘?I =] #aﬂ":ﬂ for the rule,since we have just seen

that it is optimal. L

Lamperti and Suppes (1960) have investigated a family of
conditionally optimal learning rules, called ﬁ =rules. These
give E#ﬂ}ﬁ;rpl but only when their behawviour is actually optimal,
for convergence to the boundaries only occurs for certain cz and {93 s
Since our conditionally optimal class is U.L. , we do always
converge giving at least £ =optimality. Optimality is determined
by the relation between the learning parameter € { or "d'._] for Ilg-rula}

and 1',@‘ ( similarity between the actions).
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Cur bounds on conditional optimality are reasonably tight
since the diffusion limit has its optimality transition at efl{f'ﬁ{f’]
In discrete time 1.5.17. asserts that if ElfL B‘E“L%{g,} ‘,r;r.ur%!r] gives
optimality and §7%3(l- g;ﬂ gives { -optimality. This last inequality
becomes arbitrarily close to the diffusion limit as [ V0 , for
consider GFZ[E'%@:}'}'{{]*IWA » Thus it seems reasonable to conjecture
G- Hfg‘l r|-f}#": with ffp);§ and J;;im Kigl=2 + ]aim Kol =4 'p.’;g'j"f‘aa i} , gives
the discrete time transition. Then define ?J;H %g so that [Ei,] Fls)
gives the transition, with [‘iz, -C.Fy giving optimality. As in the

generalised comparison theorem, our methods of super and sub-regularity

are probably not subtle enough to give us it.

1.6. n-Action Eh:tenainns.

We define !;r" 1 ﬁ‘ .m ||HtlLrH'EI ‘Ill and if l:’:f,'-i'J?[j £
we use J 90l "&H + Clearly we must have boundary conditions p‘;'IIB I*=Ei\
where e, is the unit vector along the j-axis. Also ﬂ;.m 'LL 3l B;=0)= 0
Lemma 1. 6 14

. I_III I' [ o I. = |
U T8 Gnfg] wmere Ny YRl = £ (Hulbl I

and the solution is unique if ﬁﬂih is continuous,

Proof,
We have convergence by 1.3.7. |in E'llu ;'Sﬂ.;']] H\

Now Emwu IT‘ u) Uﬁ‘ﬂl [J]U Jul f.l{ru. .,m-I fi .n| u} jrr}

!
Ty e T[ ana Vi st iiv0l 0

And putting "]' Tn* [a M we have the result. Uniqueness for

continuous functions is proved as in 1.4.,1, Thus &H&M [“ E
//
We shall now use the methods of super and sub-regularity, as in
section 4, and we shall extend our results for q{t, {;.]a to n-actions.
The n[‘:],l suffix on hm just denotes non-linear U,L. , boundary convergent

rules, which includes the Eﬁ{&; family.
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Note that the discontinuous functions BD[HJ |,|I'. |l , except for
am[h ﬁlﬂand 6 hijgf} except for lI' 'u IH, always give ﬂJ [ﬂ) z0
50 we always have the existence uf solutions to fﬁﬁ-g hut they
will not necﬂsqarily be continuous or unigue. However, we do
havlen|gn |l“{‘[i"l,f§'ilﬂ holding only for the actual absorption probabilities,
50 we jiacriminate between solutions using our super and sub-regular
“‘f"':m s In this way we can determine whether we indeed dc have a
true discontinuous solution, expressing optimality, as in 1.5.12.
We can actually obtain an infinity of solutions by setting fr .| ¢ ftl
and Hf‘ y exeept for the usual boundary conditions of 1.6.7. ,

so that ﬁ} “fg. But these discontinuous functions do not represent
e i +

actual absorption probabilities k6 apart form the optimality case, ry = 3 I
L]

Lemma 1.6.2.

{
Let 1.?%,?11 and environment 1 has parameters
¥

And define a'w] LHJ ) u] for environment i.
Then if ]!" is monotone, Zf ?;B' ‘
Proof.

We show HIJ’: 3 J"r: and hence [I.ﬂ'l u ﬁ": fiz % 'l_-
o U7~ 1= g L - 10 g 1716 - 7 030)
and U”, __I.TL U’ V, "',l E lel[’rl ih]-..l? J: JL""-H.'EJ

by the monotonicity of E,yf]_
o

We now extend this result to n-actions and in so deoing, we
prove an argument used by Narendra and Viswanathan (1972),
Lemma 1.6.3,

N RN S O = 7 il

99 2?7 7. 79, ﬁ[hi,]'ﬂ-l =]
b )
Now associate J fﬂ with parameters q,7 q,= aj= .= =q].

rhen if 01|77 ({")when 7,>(nonotone in first argument as in the

l|'.z
linear rule P =const), we have 4.“[?J hﬂ
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Proof.

We prove u 3( 7 -‘Tr,

HIJ* iw{'{ﬂﬂq 1|J1e] { flrffr ] “|TH)]

and “m I
f - (o[- f
Tomn H]J 2 J o é‘ '.qi 'qr]ﬂr I| F;'Lﬂ]- ﬂl[ﬁﬂﬂll i a
since t?[]” ?3 TII] by monotonicity 1:: first argumant.

In particular jT-n H[u] ﬂ TW] é. “];: q,d l.r »( for 9, -*t“ const =§

and hence D:lﬂj&ﬁhu] for linear ( «:=)) learning. This immediately
gives the linear rule as n-action, { —optimal, which is used for

comparison in 1.6.6. /

Theorem 1.6.4.
In static environment ﬁfL with Gq=.. = Qp7 9, 4% 24

with learning under E?.'jiﬂ rules with ﬂj!&]n 0l 42| as B;¥0

o, a
~0li; J 4,71 as ﬁ‘i’ﬁ
P g
Thanaﬁﬁﬂ a,t.rh-m uﬁf:I where M'—' EI i Ii-m;_
a0
Proof,
Let H‘:’: SH'?HE 2 _,1?;,. Then under BEJL'IE\II rules we have:=
i) Convergence to ¢y} i by 1.3.1.
ii) U.L. for all | .

If '-{m (LI l then we have nothing to prove.

Let Tne f and similarly { H_q-, gﬂ
ieM N
o nave gt ol 4 bl Wl SL e M
JiMel !
inlbel - Vol - f 6; [u i mo bl st e N
An i £ ,'rl ,r_.l
SRV
o
And z 0 '!'i'lﬁ}ﬂ' < mx D] g
oM =4 i jei
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We could write iy =7 lig+ (iﬁ;"llﬂill' . \i'ﬁ flm] el
JeA ‘2
J'“‘J
= a i
and Im T (]_[ Jf M
I:‘ Jtﬂrj g o E o
Then W.l.0.g. we put 'ﬂ;il_i;J'Jf E'I:h;l.'-l]d and Bmf 5llimlr'-l|,-;,|,]
Clearly Max El |l|" ) 5';
ieM
jeMe

Thus we reduce n-zctions to Z2-actions with q.‘,‘ = Q49 'EE = Qn41?

and learning rule gm{..")‘
Intuitively, in our reduction, we are always increasing the drift,
+
yet we prove that the final 2-action, ﬁm process is optimal,

and then by comparison, so is the original process,

= A = ‘Il [= f 3 ]'.I - ": ® ] "
Bl % i Woig:=q,) b, I) < 4" ||J|m.,i'l-'m] '5;7,

N e jent fig 1%y {74
Note that the 2-action, (), process is U.L. and boundary absorbed.

Lemma 1.6.5.

Q.

X I'IJ 1 § o f |
Define Er‘ [ﬂ:: Fr 2l rEE”’ELGﬁl:EJ- under Qa3 = 0,749 n

m+1"
= fr | ”ﬂ 1¢] IJ] i under 942 . #9857 Upyq=. F gt

and ‘Jz* :::EMII] r r |m-? m IS Wi '| A a IJII:n ”“ ‘Il

Then for concave E;* we have a'.ln; ;"',:'L % .%r !:i,m | J'J,,,] vl;

Proof.
For concave Z; we can use the 2-action comparison theorem
1.4.5. , which is easily extended to hold for such concave }’r

Note that here we have action 1 as optimum which gives concave ?q-

A
Pl

whilst in 1.%.5. action 2 is optimum, giving convex T’-." .

;-i_‘I X | '\I" 1 -T
1f 9"_J=1‘.-'”1"m then l"l'H.i gk 7 Iyt s where we have
partition 5 L Wy o Sl 0l and reward probabilities

{[* and q: , with learning function 0,|l| . So we update as
i L]

]

if we had n-actions with g'.j{iﬂ:lrat we compare with 2-action rule J ::J,J.
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But by definition ﬂ? (ﬂ 'l; max §- ['j|" 7 and hence
m M 'H_H ' u! i~
. Al jEN ' \ [+ 2 ) .
if we fix .'.:i , we have the result a;:.lh-- iy | W 8;1 { J'I.rﬂ. ;*,l.m l'f

o
with |im-- -‘2”]"; . /;
¥

Now a) !d;-wD -‘I-h:?lllll as ﬁm‘lvﬂ
~OU-ipf™  as lin? |
Hence by 1.5.12. 9:.. lk‘,,'l is optimally Z2-actien learning, and so
is concave.

b) By 1.6.5. we have J. 1 {3-"‘ H;, so0 that we
IJ m -

have n-action optimality over Qq=., 9,7 9,54 L TR
e¢) By 1.6.3. for monotone I:fq'.- we have ﬂ,:ﬂ, and
hence Ejﬂi. ;lj = ] except at E'Im =R
|
éo Jiel s.t. lim '"i{il ) B
{30

This proof may seem artificial since the lemmas are being
used in the "degenerate" cases. However, as in 1.5.12., we could
consider the discontinuous optimal limit [13'1. as the limit

i

of a sub-regular family and then obtain the n-action optimality.
P
Intuitively, the F}th’! rules compare actions in pairs, and
no optimal action is allowed to vanish, by a simple extension
of asymtotic reflection from sub-optimal boundaries. This is the
principle of boundary learning which will be treated conceptuslly

in the next section. HNote that g.ﬁﬁﬁ(} must always hold.

We now extend our ( -optimality result to all n-action

boundary absorbed rules,

Corollory 1.6.6.
The family of -.Ei-l iH! rules and the boundary absorbed El[ﬂ rules

| i
W
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are all at least ¢-optimal.

1im 1lim | m(t} =

Al tas
Proof.
We have ugfg * g and we prove Jg [},} 2 ;; where
41 .J il e,

J{) corresponde to qT? a5z =y O =const, with a 2-action or n-action
: rule, as identical in result.

corresponds to q,7 a5z 714

g, |£' rule.
n ] |

_;‘l
Iy,
1
If there are multiple optima, then the proof proceeds as

1.6.4. , with partitioning My }{* .

Now UE \{ “, KI flhh e gl fl';]]; I"‘|.J‘I - Lj |T:. E[,n

1 & - 0..[el]
where i3 1 2 - en{:lflh

A
And since j ’["I is concave, we proceed as in the 2-action proof, 1.4.6.

“g.j]y-bnl ul{h..l \J_J_“_j]i 1] l:# QJ”JJ(' | H"fi 'h')

i~ i J1t T;.fl
And choose 0 ‘s.t. 94|'.~]:H '.;1’1_;‘?;_ u,f].'ﬁ [ -0, :
e e : ,l 5
? [-J|.Il_-j-,q4 J'fl-Ji I -?_T:!_:_:' i J;h. | 2 5.1 il."lji _ ” = Illrr‘i] |
e \ ]/ I Il JI .Ju J s L— i; I

b) 9-,.;.4‘11-9 Uy”, }"0

Then by 1.5.3. we have |lim 13 I .«l H fﬂ and hence we

Bv0
also have gﬂl:_llill rules are all at least | -optimal.
4

?r
BB‘J\! ] I-.S '
We now have the n-action generalisation of 1.4.5.

Clearly the above goes through with §|i] boundary absorbed,

even more easily, to give [ -optimality.
S

Corollory 1.6.7.

A r-l \d - 1
If gjl‘fl’;i}ﬂ 0”#.} b W \" =
5 ¥ E=i Vi
~ 0 u]'“ vl .} h
J
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then i) If J<| , the rule is at best ¢ =-optimal.

1) 1¢ &2l . the role is optimals

Proof.
By 1.6.6., all the rules are at worst { -optimal, but with
_,‘?J where ﬁl:l = prob (just take action i) for ¢l we
have gffiﬂﬁéd’ . Whilst for 7, we get the result from 1.6.4,
/f

Note that it is unresclved if the SIW’ ]‘;I.,,ul1 are optimal

for certain . , but 1,6.6 gives them all { —optimal with ?a. g .

We have now cnnsiderad‘ﬁé_&, extensions, leaving the
difficult ﬂb » Here we can use 1.6.3. to reduee the reward
parameters to 997 65= . =4, and for optimality we can find K
s.t. B¢ Hsrﬁulanﬁ proceed in reverse as in 1.6.4. with our concave
3vﬁﬂ . However, for ; -optimality we cannot use 1.6.3. easily for
we reguire monotonicity, and 1.6.5. needs concavity , and fails
to work in reverse to give bounds away from eptimality. Thus a
thorough treatment would seem to require the construction of a
n-action sub=regular family'tﬁ}in analogy to the 2=-action

fundamental techniques of ﬁv analysis.,

It is possible that the EEH] are uniguely optimal family
of rules. But further work remains to be done on properties
such as the giﬁﬁ! s for Hﬁﬂkﬁ,f]’ﬂﬁl rules, if they are to be
excluded from comsideration. We saw in 1.2 that the EE] and

ng] rules essentially exhaust U.L. possibilities, and this

holds even if we have R - P rules with TiJ and Sij in use.

The use of Ty 140 gives difficulties in normalisation, and

the corresponding ,]I‘) rulas can only be defined when u] Ku uT
ﬂ (r}ﬁ Hfﬂ ,- lel under u, (t), with sign
— \ iy [ depending on s(t) = 1,0.
“|[T*-'l"‘ llJ]:.-'} (l; Q.‘ijm J#i, with normalisation.
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The corresponding diffusion is optimal when d?l 50 a
discrete time analysis should give similar behaviour to the
reward-inagtion rules, Difficulties arise in proving the sub
regularity of diffusion absorption function w.r.t. the functional

equation -{1 anlﬁ,f,lllf 0.

1.7. Comparison between E-ﬂgtimlitx and 8.5« uEtimalit{.
Definition 1.7.1.

A rule is centrally learning at ¢ ¢ "Inr irf 13?9
s.t. if we construct the regular n-simplex S, in homogenous
co-ordinates with ]Vm;h {il;fq]:ﬁ; then ﬂ.ﬁiﬂllg l:cl!' LJEB {where
j[‘-{é‘w f{ljﬁ* as usuall),

Definition 1.7.2.

4 rule is boundary learning at ej if EEJ s.t.
e
ARM0 Vi set. |Ti-g. <
EEELL,U pb 'l! EJJ b'J.
We first show that f-optimality corresponds to central learning
and so we take the diffusion approximation for the 2-action linear

rule and verify that we obtain ( =opt without consideration of boundaries.

Ehca.mglu T1:7 35,

Let O<a<e<b<1 , then we show lim P( a B bjc ) = 0, where
Gl
F(aBble) = Prob(reachii,<a before ]Ir?,-;l;: starting from c,with qq7q, 25

In continuous time [+ I"l'lﬁ] P;;-'e? with p-:';uszhs'lllrj* izf}*'&}
Then subject to ¢y‘:g &#I;i

WE get ¢'I]-j|' . ',E"djll = E. zhk\l ,-‘I'E_".:hu E_zle1 En’d G'J L-: ] {’E Ihl EJ _-_1‘ '_. I"E-.J"h fa‘h' - J :
" { = J it i 'S

1'||' |
AN ol ) [ /] 1 / \
i< ~1RA-p an alil < ) )9 Ao
LP_ Wi Jer for k large and so “?-.“'I *E:\F _-__J_“_:J :}J';

1im 5‘{;) =) for ¢y a, and we have the result. 7/
% T

In 1.11.1 we show how this is linked with Wald's Identity, for

the discrete time process,
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From this example we see that to from an ¢ -optimal rule,
we need only find some point ¢ at which the rule is centrally
learning. Then with thzi we stop the rule at the first action
i s.te (4] 2 - An n-dim analogy of 1.7.3 would show
TRl NET I -ff:,,r‘ci,,rﬁlw{ |-l )= 0+ motne the
iy 0 i
methods of section 1.6, to reduce it to a 2-action problem.
In contrast, we now show that optimality corresponds to
boundary learning at E;_i ‘I.J[ and in 1.7.5. we shall prove that
U,L, at boundaries, with d| , together with inter-boundary

communication are sufficient for optimality.

Definition 1.7.4.

i) The boundary point e, is stable iff ﬂ.lj 1) for !_‘E,.'u:'

J

and some { ;) . ( The rule must be boundary learning with drift
| into boundary.)

ii) The boundary point ey

is unstable iff 3:;} s.t. Ni;z0 Vi
B.t. !gieﬂilit'lj , for some ¢ ;) , and ﬁﬁ,ﬁ:lzﬁ « ( The rule is boundary

learning with drift away from boundary).

In our proof of 1.5.12 we saw that we achieved optimality
depending on Iﬂji'] behaviour at the boundary, and learning could
be made as rapid as reguired in finitely many compact subsets of I
The U,L. property was only used centrally for communication.

11i) Let the boundary neighbourhood of e, be £ . We say that

ﬁﬂf'I\ gg. communicates with Hﬂjif a.s. ] 120 s.t. HH}{E;
for sunije k and Fi'blp Fh IH Lf:jﬂ that we first reach Uf} at Eh .
Theorem 1.7.5.

For a rule to give a.s. convergence to a stable boundary, it

is sufficient that :-

i) Each boundary is either stable or unstable,and at least one
is stable.
and ii) The rule is optimally boundary learning ( ﬁg} at ey VJ .
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and iii) :ligIUj%J communicates with iﬁ"l y,f :
Proof, &

We prove that as in 1.5.,72, we are asymtotically reflected
from unstable boundaries, using # up-crnasinga%.ﬂ across
any rational interval. (see Breiman 1968).

Suppose that we are in E'j!rfjlg f; , unstable; then if we were
to have i |L|;"jll=1 with ﬁ;'ﬁr‘}gf" Yt';T we could extend the optimal
rule to ;ﬁﬂﬂind obtain a contradiction from its sub-optimality. (If
Jj 8.t ,ﬂll !ﬂ_ Ltgl then ‘li_m LJ{[]=(:' if we use optimal rules).

Hence weJluave ‘?J and naxtﬁ:nter S,’h say, and for unstable
k we repeat the previous argument for the process is markovian. If
?ﬁ. is stable, ;}. a finite probability that we never leave. Now

4 as

apply 7 up-crossings <. and we see that a.s. we do eventually

remain in some stable ?I.ﬂ for all !'?%5 .

4
This result actually follows easily from 1.5.12 and 1.6.4k, ,

once we notice that the fundamental idea is asymtotic reflection
at unstable boundaries, which leaves only the stable boundaries for

absorption, if any exist.

Esurithm 1 l?iai

We have n-actions with reward probabilities Q- To asymtotically
converge to the optimum,( and attain its nbd ?-’P"r at i‘._, a,5. and remain

there for all 5'?1’, ) we apply optimal boundary learning to eachﬁ

J
and construct nbds | « Set | Qaég; some i, and if 4 e
LY 4 O A [ T 1::A
Hri& &, set 4] Efk with probability .ln ) | kEN
Proof,

Apply 1.7.5. and note,assuming optimum is unique, that .&il'!‘r']?‘l'j
on U?, , and communication is immediate. Hence lim Ti:j,lr;.'_?::al .

i f2p
A similar argument follows in the case of multiple optima, when we

obtain multiple stable boundaries. //
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The theorem 1.7.5. will be applied in chapter 2 to games
between 7l -cells, in order to prove convergence topure strategies,
and a Nash Point in the case of general sum games. It allows us
to investigate the limiting behaviour when the fi-cells execute
mixed strategies, in attemting to attain the Von Neumann value
of the zero-sum game,
Remark 1.7.7.

We can relax the communication with finite probability to
all ‘?J in 1.7.5., to give a more natural algorithm. Set _]J!'ﬁ}:’g]
and if Jt s.t._ij".'i;,fi set th:";ef;_ and then visit boundary nbds

cyclically until we are absorbed at some stable ‘3,,, -

[ \ [} | ] "
[5 ) e & 4 4 | RS < |

The proof of sufficiency for a.s. convergence to stable fm

follows as in 1.7.5, by asymtotic reflection from unstable Er. a

1.8. The Family of 9 -cell Learning Rules,

We have now derived a form of probabilistic stability theorem
for discrete-time stochastic difference equations, and have shown

optimality to be a boundary property.

In this short section, we shall list certain U,L. rules
which will be used in chapters 2 and 3 , in order that the

T =cell may achieve environmental adaptation.

1. P = constant , for all L .
00 Linear
D Rule Analysed by Norman (1968).
6 d
=0 Wl
|
P == - - [Omas 2. {=optimal rule with 9{ﬂ1= H’ill.”;,]'

TR .
g{ﬁal’al Lo fn

o 1 The linear rule is the case «=0.
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52.

Conditionally optimal rule
B[FI = K (ﬁlﬁl).

Optimality depends on Eusl :

Cptimal, with ®oundary learning

B < k(L]

#’ulh Zp

Boundary learning, yet £ -optimal,

always converges with ?[#ﬁ”r"v"

e[ﬂ] Mﬂaﬂ;}m + Umin.

Optimal, with both boundary and
central (middle) learning. Centre

is used for mixed strategies, and
boundary for Nash Points.

The extra central "dip" may hélp
in the cellular differentiation

of 3.3.7.

An expanded view of the boundary,
showing the essential differences

between ﬂg' &E and ﬂt. .
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1.9. Time Dependent Stimulus Probabilities.

Now that we have considered i -cells in static media,
it is easy to extend the results to certain time varying q?(t)

Theorem 1.9.1.

If ] is.t. lim sup 1jﬂhi1 ~l Hj¢j then

e L'
i) « @
under i) iﬁc- h.-?'.
®e o lim L|"- : |
i WLs 1
i B0 )

and for 2-actions under

141) If lim sup /0 -l-0<| and D<) then [,
3 *4
iv) If 1im sup | 'M” § & and 11m inf T 7 'UEE
e = 1
then for 179?'|' [Ii’l’l i nfg;[u we have hl‘ﬂ a'(ﬁ;):ll
"{]- Hrl] B’}':l
Proof.
We first prove a lemma.
Lemma 1.9.2. ot " oy
-I"’:' e N g’b,‘- 1 .I“r_.- ot
D Ua L W ii)= 410 vith  Affiel)s | Hici;0)-0,
3 A y G 2 A
i1) 1im ] | JJ“., il n JiL 5;_:I)=J‘ [i: i;=0): 0
l"Q’u Fen I:-J. B
where Ut is the expectation operator related to q:{t}.

Proof.

* Il.llln'- .:' '-IIII' I| ':_ I'I ¥ i-!....'ll
We just have 1jﬁ1 |]'Jr‘]{’|[1J f[ ijJ;-'r*,-JJ'J,EJ)'ﬂ' D’“J
40 ot L

and the result holds with ‘Y| - ¥if!

! | / .

Now we stop the process at | s.t. rJlu l] I fh r E’J

and we find sub-regular 7 b, Urqb";-*}&'j for a1l taf’
Then 'L [t”“ 2 ’}”Jnﬂ[fn

For ii), we consider the result 1.5.4., of Norman (1968), for

2=-actions.
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T

It is clear that the result is only dependent on 1'“Iql|j] for
| "

e b

we just require s to give "!.f- {|= ILE e — ':;"Ilj q [
L | —— | i !

BT EE v’

[= ¢ %1 1% f*-
Hence the same ","‘;g,- ESIE-"E.- will give us bounds on E.,] -

'.\l
Also, we may continue to prove EE'["']{“II.]I” is monotone and convex,
TR

to give a comparison theorem analogous to 1.4.5. Then we get ii)
after noting that the result is unaffected by Utl RS & jl when
we take the limit 5 . This gives us that all U.L, rules

are at worst ¢ -—optimal under the given q;(t}-

For i), under iﬁ, s we can still use !;h:r:? ?hi to give the
result, by choosing & < fgiaﬁ 4., Wit wit; inf k2 O by

’ . o J et
1%: '?'ﬁlffiiﬂ ¢ 11,}#.

Finally, for iii), with Q'L rules, we again just note that
our super (sub) regular "}"ﬂ were functions only of T'dh s0
that the results extend naturally.

For n-actions in i) and ii), we mimic the extension theorems
of section 1.6. , for t? t'. And in the slow learning limit,
the trials O<t< t' do not affect limiting behaviour , for ﬁé :
The result for ﬂ, is ensured by the asymtotic reflection property.

74

Remarks 1.9.3.,

a)}) Sawaragi and Baba (1975), defined a variable C+H medium
which effectively gave ¢ -optimality when [E,[ri]- GI]JI:';*:*,.- it  for the
linear rule. OQur 1,%9.7. gives the result for ﬁ U.L. rules, and we

see that the significant factor is qlm‘f){ « It is 1.9.2. which

enables us to prove 1.9.1, guickly, whilst Sawaragi and Baba actually
repeated Norman¥s analysis in full with the new time-dependence.
b) Tsuji et Al (1973) define a non-static environment which

fi\
generates {|[|7(7 q,m and this is said to be completely isolated
| |

L
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in the Dth approximation. However, they use a structured lLi
(see3.%,3,) to learn in the environment, whilst a singleton
7-cell will give convergence to E‘ﬁ 1 under éL e (1294742

The paper is based on the work of Yasui and Yajima (1970)
who consider 2-state, 2-symbol automata and define kth order
isolation, We shall find in chapter 3 when a structured automaton
is required rather than a single ﬂ; « The ;].1: is suited to a
rapidly switching environment, which contrasts greatly with that

of Tsuji et Al.

1.10,. Skeletons.

We have neoted( near 1.5.20,.) that the r-'; -rule is not
U.L. We now gain further insight into such additive rules by
attempting to construct a uniformly learning rule on a grid
which spans I =[0,1 .
Definition 1.10.1.

The set EE;'ie z{ forms a grid if

l'l'lll ¥ iI]I T E’IJ :r-il:'] ‘II t1- T l'-_ . f "|; 1
C oo f e [t md e s
and i ¢ 0 (-0))

The set spans I if |¥ﬂ | . =0
e i )

Theorem 1.10.2.

If a U.L. rule is defined on a grid, then it will not span I=[0,1]

Proof. _
= |: 0 s ]lr.._-. |.'. ]-" .I F} = ﬂa
Put ,_.Jﬂ. U i iﬂf..‘.;l S ) by"action
f - 1g) iy reversal®,
F” £
il ’I e e
Thus ‘i, “El“*n Uy
and if ."Jd_,,f.ll Uﬁ".} =] ”.:G ; absurd,
“ :
Hence lbiq b 70
13
L i 3 ¥
Suppose an £  then 1, ] 5&‘9f==€¥h31 say
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T A
| f1 1| f 1) i |IIII |
sha L2 fét [\I,f}gg]u'l—c;l!l ;Zﬂmﬁ
- 1
A =
i f‘:H‘FBI { | f
3 — : euE ,{f% gives &:.I't.ll"' qu"
y u i (~ %5
lllfl_.rHI N = '__H-—-"'_} e Qi
[ I — — i o Yo
== ' : R
'1'1_'9 S g : -ﬁ‘ TJ; Ti!," ]lpﬂ‘
jooad . ol il
Thus (}| as D[.,LU with Dg*ﬂ-'a*l'ﬁ',.
The identity ,;q—."'g;a ; “M-‘,-'ﬂa arises by rotating the
fin n

diagram above through TBD“; we are reversing actions, with

- - -'b
[ = Prob(take u,), |-I= Prob(take u,) = i .
red

This result is easily seen to be closely related to the

- b ! B X
. Nl Y
§ =rule being non- U.L. The grid process gives ”nr"."._ | |Lf qlfii' 8
] ['I'Irl" [} ik f“,:‘n,.‘

{
Wwhilst the I[1,---1*4.1143: has this ratio independent of n, in order for
the additive process to span I.

If we could relate U.L. rules to a countable state space,
it would help in proving results. So we shall define a spatial
skeleton, just as in continuous time markov processes we may

extract a T -skeleton., This spatial skeleton will be used in an

alternative method for proving optimality under ‘Q, .

Let P(xi B xi+2|x:i.+1} = Prob{ reach 1| ¢ x; before Wz X 5

Mo Mu K T
I_—‘__I_ i f Etﬂrtinﬁ at [ — xi+1 }-

e 50 Aot
Definition 1.10.3.

L skeleton is a set h ; 'L{.Z} which spans I =[U.1}.
The probabilities P(x,Bx, ,|x; ,) can be calculated approximately,
assuming no overshoot, using a diffusion, whilst Wald's Identity

is useful when |x - xil-i & with £ sufficiently small for

i+2

the learning process to be considered as a form of random walk,
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In the skeleton process, we only look at the process at the trials

at which the [i-cell has just crossed a point x, in the skeleton set.

1.11. Staircases. ( An alternative method of proving optimality of ‘ﬁ}, )
We first take [a,b] ¢ I with |a - bl<¢ and B'.'l]] I

for TIE[ﬂ.hI , 80 that we can approximate the process as a R.W.

and use Wald's Identity to obtain the absorption probabilities.

Then we construct a skeleton which resembles a staircase, when

projected on function Iﬁl',ff.']] ¢ With successive step lengths of constant

ratio }S « This P—staircase will approximate and asymtotically

converge to the learning function (i at boundaries IJEi,nﬂ.-l) .

In the first lemma, we take '9{1||:8 and approximate the process

in [a,b][ as a random walk with increments:=-
[ - | \
f |"“"II|=1| =rf:q'- B (!'LJ- if n1(t] and s(t) = 1.
il 1m] ('J bo if u,(t) and s(t) = 1
I|| Hl) (fl : if s(t) =
Lemma 1.11.1. 5]’_ }
5 i iy
For the R.¥W. on Ea,b] 7 1[[1- % [[E - /}Ir E.b('g r:lliil d))
where ﬂﬂ = Pr( absorbed in If( starting from I-,'t(ﬂ yl before | ?;L’ ¥s
rl_ = max overshoot at |1 boundary. And "'127“1‘
Proof. Bl
e($-i] /
Wald': Tdentity gives f (E’ ]/'lll.urﬁnn) o [
fog B2 | /
0. 1? eli-blo | -|| J“] AL Lo
and put ﬂ:lr - g .?l F ] a 1 ..
Thus (<0 or (% with ¢> |bﬂ!'fl-"€?1?[} for all b.
- I- i

Let aﬂﬂ be the stopping density; then W.I. gives

‘leﬁd J fle*98 = ¢ vith o0l

&) Oy Dawiel E Pronert - VAZS [nisrnatoriel €




58.

Now 1,7 94 with 5}}0

[he%iss (- fllle®

(, Fl'}} SIFrﬂ }
ﬂl--‘,gz‘ Es[ﬁg“’Hf ‘;E:!a-d.l,’.s |

Then E

or H]il A I } Hmj a";;EEﬁi’zﬁ"ﬂdﬂ‘d.}/a) /f

Remark 1.11.2.

i) The diffusion equation ¢+ rﬁ'}ﬁ gives:=
'i

Bl < EH’ ) /[t M-evl

with fe ;-%] X%g
and so in WL.I. we would expect (- qu?']’ﬁ as (‘;}‘bﬁ
] b
i.e. H'&f and ly-bf:'{ with E&'G-

And for 9 d“ “Ti? and r':ll \LD , the overshoot becomes negligibly
small and the diffusion approximation becomes asymtotically, arbitrarily
close te the diserete case,

ii)} The bounds of Norman, 1.5.4., are just the case with

[a,b} =£0,‘I] since the drift is homogenous througheout the interval.

Theorem 1.711.3.

Hnder& ﬂ{} 0 fcr |.H'1_ , where the {Eﬂ family

} ﬁrrlﬂ ]I] s with q, <.

Proof.

This is an alternative method of proving 1.5.12. which
gives more insight into the process and is easily extended to
markovian environments in 1.12.9 .

We take X|-Yp s.t. mi2l  and so that Bk~ iifm\ﬂ.
How we define the Jﬁ-staircnse and estimate ‘i;I-: F"(}g-'_‘ﬂa”. I}i")
where P(aBb|c) is defined in 1,10, and

Kee I-Um) g™ wilh Jil-'.{ : ["F){m 77 Q(K} : 0 '[ir:,fv 5]’5’;"

For &{ﬁ]-Hfﬁ{I-ﬁl]'m vqure Moz (KA f’[’a-;}
E) D Dlawicl B Profis ’r{r"'ﬂj W8 Tniternatorel &




5%.

Sketeh of Staircase Construction. T
, P I =X |
| |
4' m B(Hfl'ﬁﬂm :
(b, o
i . : , : l /ft"}:ru} jﬁ
W TR b

e — — ” = »

By 1.711.1. Pr(xr-‘l B xr+1|xr] A (E'a.’aru,ﬁ_eﬂrfﬁf} /[ESIHI‘@_ES.’F.L&"]‘

and = “' EFP}FE\I Pf) /“" E-;jﬁrfmp] a (I"E’-J’r) /ﬂ E‘E‘m
" If']_ E-Eﬁ‘}

neglecting higher order
terms and overshoot.

with )’rrgﬁr/mﬂ and 6‘(1;.‘1-\ H,,rmd (ﬁjr-l]f

de use &{ﬁr_,) since this gives smaller (drift/diffusiﬂn}‘rm o« p,
and hence is the worst possible case on [)fr_l_ ,‘.-“]
For I:[p,1) , we had the comparison theorem 1.4.5 to prove
this result, but as the drift for linear [} is homogenous on I,
the result will hold on arbitrary intervals. We just require

f5 small enough so overshoot can be neglected.

« F{ hr-‘ gh“i hr)“ ; & (_ Smj‘; in?rfa-il)_ = |- EIFIF'fr).

and Jﬂ P[}ir_' Eﬂr“ !.i"-r} e ]:L lll:l' EFP (' 'jrl'ld:::_ ngﬁf F‘{?‘l‘b)>'
th_'-_fd"
s Rohow 1..!=z P“fﬁr..g“r.. [xr) y 0 iff é:mf?f' ) <

But by the ratio test we get g&;ﬂ'-ﬂ converges extremely rapidly.
F L%

& Oy Daviel E Propert - VYAaZ8 Inisrnaitorizl €




60,
Let (" EIF{“gr]

Then ﬂ;/ur” - E};P (, i}lgf‘ji-l}) /E;F(‘ gfé“‘*ﬂ'f"'”) with gff}mn-;)f{h.

]
8¢ (Yop fI;fw"D wt do| 2 67l pepel

Hence for il s ¢ {1, ]
& o Gra"r ? H’F {rb-"f r'l'l.al 4 | I/ i e [Jul_
Oryy \ ﬂ" I

and we have convergence by comparison with geometric series.

Thus ﬂ"[ T‘p B}'_m ilhn\ 2 ﬂ P,-IfLHE;r“ hrj] 2 ‘i;ro for all n 71,

r=1
Remarks 1.11 f""‘ll
1) We could une [H-ﬂ/ﬂ E_'Ea}] and still get result easily.

ii) We are assuming m is large enough for us to neglect
overshoot, which becomes negligibly small as n% . . If we

included it in P( x

ro1 B X .qlx.), then its effect would be

geometrically small when we take s H,

r

Finally we prove that {z| must hold, in the limit n7, .

1
5 i - g™ = )Y
\H +H) Let x = m Irf = h.
Hf“m&_ Et"‘l:l ol I_ ‘gfh
R; 8 (%an).

i

~
Lemma 1.11.5.

;"1 :l'in PR "o’

il

fr ;I"gnﬂ} ]?lrm\. % |- Exp {-Z(} }rﬁﬂl for z > O,
‘ d 8l
Proof.
I.’ £ | \ | \ : f ; \ b Akimy
P&Im I,_J'\HEI J}lth i I:;'ﬂlj (GE[ L:"ﬂj.'.] 4 F;B'I-t,” ID E] ]“Hﬁ'jl J 5
where 9{-"'11 denotes probability taken along linear 5"'::'-..[ « Similarly for
fs] £ i 7
aa witk (0= 60| br  T3x. [y along |’
: '3{31;} b} . Fex,. non-linear 5‘,&].

3
And PE.‘J'.'EH', denotes the corresponding probability along U .1 .
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f) ; ' f - ' \ ;
Thus }&'i;, .?":} I b\ N, | & lll' E;,;E,. I-z__i,vim_ib \ by 1.5.4. with

W - Flig
ikl super=-regular [ i

T e L S ff \
and “r‘,..'l‘-' Ap ihg | % W "2 R b h Fad
| ‘Bl
) [ ] | !
How denote | (o b Jxrkr-.,=l’-'l1.,_

We start from x_ and with probability :—}:r} we are absorbed,

+1
Else with probability hn we reach X, 9 and with probability 3_??5
we escape to X4 before X 1"
We show ultimate escape is certain.

lﬁm Pr(absorbed in 1=! starting at '-=--'-".'7"1 before reaching I\Z‘ §
ned = :
3 I T L 2]/ iy v !
& L 1 B I~} ol | Sih N yiEE Vs 1N=%
ﬂair:;lpr{ ;lt"Ii:'t:r:H-‘I:JI 5 Gpl TV R A PO AP VT3
= 1im (k&) / A
. y 1. € \
N3 Ill- e .‘4“1‘

But lim b =4 for || whilst for =] this fails and we still
n=s..o
need the technique of 1.5.17.
Hence ?;quPr(xq B‘Itxnnl =4 .
I F F ALy
Now the process is semi-martingale with Al <[ so ’ﬁl upcrossings ::,.-_1
and 15v¢ 0,1}
To prove absorption in [ independent of s/mg theorem, we just
reverse the above and show 1im f"(u:’-.,ﬁt-f.],zg T f-";_—-‘_r]‘:-f 0
N0 s
for any fixed m, (w.r.t. n ) with m 7?71, Then the result follows

since the Bboundaries communicate, as defined in 1.7.k. //

Remark 1.11.6.

The reason for constructing a staircase is that for a dynamic
environment we can still cbtain an exponentially small drift
towards the sub-optimal boundary, for intervals Il:xr‘:rﬂ] with
[ =4 fixed, yet arbitrarily small. (The optimal boundary will

be shown to maximize the average reward.) Then with J fixed
: /

r L 1 g
and x 11, we have 1L A b T T for large r and we

can use the theory developed by Miller (1962), and subseguently

by Keilson and Wishart (1964}, for processes defined on markov chains.
€& Dy Dyl £ Pronert - YaZa InesrrgborEl €
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Intuitively, letting |-g be arbitrarily small yet P"i gives
E”:“I,- ~ constant on each "step" and we can ensure that the
process asymtotically becomes that of a R.W. , defined on a

markov chain, on each "step" as we approach fi= 1.

1.12. Dynamic Environments.

o9
We now take m(ﬂiﬁ*gu; ) as the environment, with
cﬁzﬁ 4 equilibrium vector, and we show that the limiting
behaviour of the reinforcement process is only dependent on

3z
K ;.':'.E
the ratios H gi' / E,q; |, The distribution over environment states
L is denoted by gf{#]' .
Theorem 1.12.1.

1) um W (1), wp)- E?"flfﬂ\. whl)  wnere Y(icl, @) Yligu)-0
i1) u., Ji(ljm J“y![ - z.‘ ::I!L l[yl"l where E] .{III: | ('fll'}: J. ﬂ‘"y. =G. E‘.I] z()
with U defined as usual:= Wﬁﬂﬂ,@{ﬂ%f[r’?}i;[i{full_iu[.*rl]] |t ’:'J,'}

Proof.

i ¥ w): LT 6) e 0.(-7) 76, 0)

wl TlaeT<ln 0T - ln WU 7)- Ul 057 00
b5 e Ny

-3¢

where we can interchange U operator and limit, since U‘uﬂ

converges uniformly to 0 %

/i
We now actually write out the U operator explicitly, and so

consider the short term behaviour of the process.
Let {ﬁ(l-!‘@\ be linear in (), éﬂ %‘%wd and put i’ :fréq] .
Lemma 1.12.2. =
L) 4 5 (Q°AQ(r) win T+
M- (06 T % T, 6)

with. %y aetined o - TZJ’IIE '; :'I' BJ“H and Qj= CT,H 15 0 \‘\
Ti;? B4 80} (I- ;)
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_Prﬂof. | g I|I rh.“b“ 1 ] f I.-‘I,l 5‘.‘i‘r '|]
U¢'ll‘ll:.ylf::.'ll Il['_{"flllﬁllj_ -Iﬂl PJPI¥{'JF‘I|'J] L | .-.J
v [ | +% 7
« 4 i llw.g’) O G
with I[-’JLI " ZI-E:U q'dl,'!'l : . 33‘-|
| & A ' I _.'I|' A j.'
' AR p—
i |r¥!' 5 l.u‘

Now linearity gives f_f'l‘ - /g
W
mas B[ 7 £0 (FAG 00T
g

and UQ = jzf:“r ﬁ‘ 1? .i %[TIJ J as required. //
Now if we fix the increments T:E we have the process as

a R,W, defined on the environmental markov chain. So for 2-actionms,

mimicing 1.71.1. we define MM'-“ L’Q*ﬂfﬂm_b{ ” *L'rf‘bm;[lr'”- |+ 4-1

on interval [a,b] with |a - bl=¢ say.

Also with U-’{[dﬂ@.. and @:!_ﬁ"ll we let

WH) ¢ bI0ag+ 6agGieo0-b] + (o) [£AG+ 0.4

and we try to solve VQ'@ using I;'f EEJ

rf:"

"'«-._:"‘"1

This gives HL‘:I] F,'f'i} or that iHPH'J gives the relevant solutions.
S50 we have nbta:l;ed the correspondence between M(s) and the
approximation W te the U operator.

Actually M(s) = P(-s) = I where (f’[&]h :i‘j ﬂhj H with
§ divided out for convenience, and with mi (8) = m.g.f. for R.W,

J

increments if environment makes transition i -7 j.

Miller (1962) uses P(s) as the fundamental matrix and on writing
iﬁﬁ."!fﬂ;;;lﬂ:ﬁ to define 5(!:,} y shows that the drift constant,
corresponding to A(s) = 1 in scalar case, is given by aq'r- ) = | for
markov processes.
] o ["ﬂ ._h
We have 'mijm} is the mean i,j, increment and ﬂ]lk;;jsil g Jj

generally, where Jajhfxﬁgivﬂa the increment distribution.
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The Solutions of

-4 ( ,_
— R dkis) = 1,

Lemma 1.12.5,.

a) Miby=4-T.

SRR )

¢)  d[o)20 1;{ d JH:I};JII , 0

Proof.

a) is just ahserVation, whilst for b) we have:-

Ch IHJJL s lr'ﬂ!’j ﬁ ﬂ 3”9‘51[ l‘-r” J;f djl[ ]J'IJNJ]

Hhﬂre N"' ‘:’1‘1..":12_

Thus ’-1,-}}51}{15 ;J ier |l [\ <)
where ﬁ i f"bl the first spectral matrix.
] |.I
oo L= :ll
mas -l (] g 2re g.gth g g
- "'I, ;I‘ B Iy i |
sar o) dﬁrw.j-mu i [ (- 4b)1) (1'0)-2'f)7)
and so I (¢ (P0)- £ 0)1))-0 ana J'[j| 4 .5,-.,";.-]. mJ-Ii.-zﬁJ_

= =bll-b) b M) < g 1, o))
800 bl § o, [g743] + - £dift  na memes o)

L ¥

This is essentially the same calculation as for b) with
P(s) - I replacing M(s). Note also p(0) = M(0) and n{EH & MNii=0. .
LS

By transferring from U operator to M(s) techniques, we have
a close approximation to large iterates of U, when 1 is kept
r i el ]
within the small inturvﬂl[a,hl o If we let Giji: I':Jféw| when |1-h =€

then as E.‘LU , this approximation becomes exact.
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Un using 'ﬁp rules with the £ -staircase, we have precisely these
conditions holding as '!IQTEU,IE 50 we need only consider ,{',.,}=f
and sign(dldﬁ ) to determine the limiting behaviour as in Miller(1962).
We shall now state a central limit theorem of Keilson and
Wishart (1964) which gives us the asymtotic independence of

environment and 7| —increment Process.

Theorem 1.12.4. (Keilson and wiaha.z-t)

1z F ke < Il Hﬂ t X(k)¢X) then
: [iroind
im  F[xJRekm, k| < 0 (xr )e

k3
where the environment has equilibrium vector e and states r.

The mean drift |- 'dll-iﬁ and varianee ﬁl-: - "]'{J} *F."II"L}}IL
which are expressed in terms of P(s) matrix, KXeilson and Wishart (1967).
In their notation, k is the disrete time and X is the value of
the inecrement process variable,
Proof.
Keilson and Wishart (1964). /
This result allows us to prove that as fly)we asymtotically

follow the mean drift.

Lemma 1.12.5.

i).1f Ov) ana Iﬂ-?d" s.t. Oh=l = constant, then
Ilm Pr.JHt hml?ﬂ '?U for all j?d
k=p2 .
ii) This limit remains true as L-mf':’h‘ if 5:5{2”'} : Hea{z] L'-'!.mf
P R ﬂ-n[H] and 50 Ky O also.
Iroof.

0 Yy
Fi‘ \“-] m ‘Jj Ff |)nh1 hﬂh.-— ] N.( - ]‘}Eﬁ ﬁrfq J‘? asymtotically.
_ ik
Now put M=l and hm=f= meﬁ with k- A2

Aso [ Gi{}lllj for 840 can be veified, say [ HJ!
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men Yo Yoelk P ViR,

Hence hm Ir ﬁﬂ,'hm 75‘: 0 for 473-
kiﬂi k0= K v :
§20 |

and result follows by a similar argument for ﬁikhx~hm x*jl
Also if l]-'-].IE:_! and {j-'.}if“?‘:l then |im I/ s »
290 ‘120
and we have justification for the remark after 1.12.3. We asymtotically
follow the mean drift even as the interval width O, so long
asfﬁ$ 0 more rapidly, as defined above. Z is effectively the distance

travelled by the increment process. 7/

We now just need to assert that 1 ffdﬂ s.t.

_-Y. X ! r ] ey,
(s [¢° “*’-f “"} (359, b f’d]"*ﬂj in the notation of 1.11.1.
'L._I“' | i1
Such an ' is related to the real non-zero root of |M(s)l = 0.

Lemma 1,12.6.

1 ¢*<0 s.t. [Niliz0 =7 §£57 <0 for 411 b whed « 050 .

Proot.
Consider the 2nd deivative of |M(s)|. This has an upper
bound for all b by cbservation, Then by Taylor's Theorem, all
solutions to |M(s)l= 0 with s # O must be bounded strictly
away from the origin by some 5%¢(0 . Similarly when J10)¢0 and
gij?{;i: we cbtain}ST}G'J with £(1) re-defined fur"ﬁ'abaorptiun?f
Freedman (1973) proves a useful pair of inequalities which
give us the same asymtotic mean drift following and his results
@lso hold for finite stopping times. However it has not been possible
to actually construct absorption probabilities in the manner
of Miller (1962) as this would require Wiener-Hopf factorizations.

But since we are not concerned with environment states at absorption,

such a full analysis is unnecessary and it is sufficient to just

apply 1.12.3.~> 1.12.6. for reinforcement in a dynamic environment.
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Theorem 1.12.7.

a) If ) with B 0¢7'| wnen |p-al: Olg] ¢ oyl
then Pl(a Bblec = (a+b)/2) = ;'ﬁ’:'fuhyﬁ with §24% fr d<p
and (" as in 1.12.6. where « 1)<0 ,
faX | - i k=i |!-i-
b) m [Jifl=| H#0 it €47 284
8 O Rl bt ! I i = =
Il - &
Proﬂ'f.
The bound on s follows from 1.12.6. as .7/ =7 A.ﬂ;h

The drift towards the sub-optimal boundary becomes exponentially

small by 1.12.%. and 1.12.5. , since asymtotically, as 5¢j the

mean dynamic process becomes indistinguishable from a statie process.

Miller’s paper (1962) is also relevant, except that he considered

just one absorbing barrier. However, in this case we obtain

P( absorbed at the barrier)~ [ E‘Pﬁ where .|(|-| and

y = distance from barrier, with drift away from it, and 13?’i §2U
For b) we apply a) in each interval (a,b] , and then piecing

intarva;s tngethe? as ;n Ehe stai#uase E?BFrem:gpL"\

mes P60 [0 :Tel0) » lm T (I-¢ ) =]

=D [ e L ¥

g \£7l
when r-ﬂ:!n and §= [\

B

A

Here we are interested only in the asymtotic behaviour when
the environment and | -process become independent as Gwl , so
we ignore the short term fluctuations of 1.12.2.
Note that in 1.12.7. a) that we will actually have

PfaBb|c} exponentially small for all cg{a,ﬁs as (] and the
absorption probabilities asymtotieally reduce to the form obtained

for the static medium in 1.11.71. This is required in our / -staircase

construction for dynamic environments,

B} Dl Clay/iel £ Propert - YAz s Inisrriziorn: €
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| I Us |
LA A
T | J

b | e i
Diagrammatically we have short term fluctuations in region

Remark 1.12.8.

U1, whilst in Ué we follow mean drift with arbirarily high probability
as BvD . Then in U3 we could consider the environmental state

for the full analysis, whereas we just require P(d B b|c) for our
reinforcement rules.

Theorem 1.12.9.

vnder fl, [ 2| aer £ g 289 Yz with ;1020
o, I 241734 V)

Proof.

First the result for 2-actions follows from the ;—staircasa
construction 1.11.3. , since the approximation for P{xi_1Bxi+1]xi}
still holds with drift constant §,() YpelD,l).

30 %1#3 Plx, Bx, .lx)7§7(0 holds witn I-@ arbitrarily
small since 1.12.5. ii) ds found to be satisfied, and also 1.12.7. a)
holds for each "step" as we approach any boundary.

Then as before we gat%im P(x6 1 iln}ﬂjwhen drift is away
from the boundary, and hence :he result.

For n-actions we just use the Qﬁﬂa rules to give asymtotic
reflection from sub-optimal buundariés, using a comparison argument

analogous to 1.6.4, to take us from n-actions to a 2-action

model, when we can then apply the staircase result above. 2

Remark 1.12.10.

i) A ll-cell learning under ﬁ, asymtotically takes that action

which maximizes the average payoff in a dynamiec i) iﬁJi_%:f} .
ii) We use 1.12.4. and 1.12.9. in chapter 3. There we find that a

network of fi-cells asymtotically maximizes its payoff at the next trial w.r.t.

.the. equilibrium environmental distribution in its present state.
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1413. Learning Barriers.

We knew from 1.7. that ﬁﬁ is boundary learning and
ﬁt is centrally learning, yet in this section we show that
there is still a unifieation in the underlying learning mechanism.
Definition 1.13.1.
A learning barrierala,b) ¢ I s.t. lg-pl- € and §l|: 0&‘“),5H-h']-

This section will consist of numbered remarks relating to this concept.

1:13.2, For boundary learning we put a barrier around each
.EL:J ¢ Whilst for central rules we place a barrier away from
all boundaries, From our previous theory, when the equilibrium
drift is from a-3 b, P(aBbc: L)) <e 202 ; for z 70
and independent of  anda,b] . This follows from weak convergence
to a diffusion es Q}) and 1.12.5. , 1.12.7. for dynamic /[} .
For optimality we have a learning barrier in any arbitrarily
emall interval of all boundaries, and this provides the mechanism
for the asymtotic reflection from sub-optimal boundaries.
1.13.3. The barrier is a potential step and acts as a form
of "diede", in that we can only pass through the barrier with
high probability if we are travelling with the equilibrium drift.

7] r
The effective '"field strength" is JJ'E&E ALY and at barriers

placed centrally or at sub-optimal boundaries we have ';.?i” .

i) Boundary Barriers. ii) Central Barrier.
W f -
[ AT 9.
00

A

fi:0 b b, Rl W=0

|
[
@b h?!

3 F ]
1.13.4. We could put &(i}+§, )= constant, to see that fﬁ and f;
may be viewed as complementary ways of learning, yet they both

operate using the learning barrier mechanism.
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1.13.5, For optimal boundary learning rules, we effectively
just have a deterministic stability theorem to satisfy. Sc we
could actually reformulate the theory in terms of control theoretic
terminology to give switching between attractors through a catasrophe
until we find a stable attractor,
When we consider networks of Tl-cells, this would entail an
automaton. increasing its environmental adaptation through
structural catasrophes as in the work of Thom (1975). The automaton
could then inerease both its memory depth and number of actions
used, (see chapter 3).
1.13.6. The advantage of stochastic automata is that we have
an explicit mechanism for incorporating environmental information
into the structure., Thus a 1l-cell incorporates both a learning

mechanism and boundary switching.

11} Swi’tching ali) i1) Transitions [(t)-i(t+1)

X wl&lﬁe o H' & W, 1
ﬂ—-—)l & I.I[ﬂ—-z-a

We can choose 8" for the switching using the transition
diagram. New, if W and W, are arbitrarily close to their
respective boundaries the 7 -cell just has the boundary learning
barriers which are stable only if they give maximum average payoff.
1.15.7 We can also easily define E@: to give a hysteresis
effeet in its switching, still retaining the U.L. property, thus
mimicing the switching of the cusp catasrophe. This effect is

closely related to the grid 1.710.7. , and with H1+W =1, we obtain

2

L. ]
an ‘overshoot on boundary switching if and only if Wac A2-8"l .
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__.__———""‘"'_-_Tr 52 Hystere sis Switching.

Use E:l and 0§, with

=—

Blnear 1 and anear o,
5T 8,2<]-8,. :

1 ._:'-ri.;' This gives 'I?'-;b' learning

| rule.

P We have:-

2 o) Of)=6,  Te W W]
e e ‘ o) 9li-6, elow)u (W, 1]
0 \

‘:'r. e W, i ~—%— denotes transition
k= BN o= line U(t) > T(t+1)
1.13.8. In 'i.‘l-call games and fi-cell networks, we find that

the effective stimulus probabilities are dependent on the action
distribution, so0 that %'Q[EL[H:'. « This can give rise to a potential
barrier between Btrict;yr;tahle boundaries. Then,ji-cell switching
behaviour between stable limitimg structures can be likened to the
"tunnelling" of charged particles in quantum theory. In 2.4.5.
we briefly examine one of the simplest cases of 2 strictly stable
boundaries, which represent Nash Points of [[-cell games,

A potential barrier is formed on placing two learning barriers,

(potential steps)"back to back'as shown in a particular g(ii) process below.

A A
.

e Potential Barrier.

! e[S
0,=4 7% .44, ‘?'f'fz
~ 1-1 ,,1 { q J ¥ E » LB. = E‘H_ i .[|. ¢ [‘.: _IT] :'
WL -l = 1 i

LE.E‘: El':l_ b€ [Fqls

'ﬂﬁi} | ¥ i
| | where LHi denctes
Y O [ e ' ! learning barrier.

TI|=G g F ﬂ =i PE = 1'r. - ] .:—-]: I

1 - i
i— R=r= »

— — ~ —_—

1.13.9. Our reinforcement rules ﬁﬂ depend only hn tha_
boundary learning barriers for their optimality, which could
perhaps be thought of as stochastic attractors and repellers.
This concept of learning barriers and boundary switching is
important when we discuss structured automata, and is the basis

for the main characterization theppimBryyic E Probert - YAZA Ini
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Chapter 2.

There is no remembrance of former things, nor will there
be any remembrance of later things yet to happen among
those who come after,

Ecclesiastes 1 v 11.

=
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2. Games between Unstructured Automata.

2.1. The Model for i -cell Games,

In the previous chapter we considered the il =cell playing

| « It is now natural to formulate

against an environment

a pame between || =cells so that for a particular j -cell E. the

o

environment is the remaining 'ﬁﬁiﬁﬂ

| (f

« These games were intreduced
by Chandrasekaren and Shen {1958}-aud developed to a limited extent
by Narendra and Viswanathan (1974), who first demonstrated, through
computer simulation, the possibility of eyclic behaviour.

We shall first develop the theory for zero-sum Z-automata
games to indicate the main features, before considering genaral
sum n-automata games.

Definitions 2.7.1.

i) Let gij = expected winnings to automaton 1 taking u when
automaton 2 takes uJ.

and |* = Pr(automaton « takes ui).

ii) Let py; = Pr( under actions (i,j), automaton 1 receives penalty =1).

Pr( " " " " 2 " reuard +1 :l.

with qij + pij = 1 and Eij = qij - pij &1 = Epij'

iii) Let pl = Pr(automaton 1 receives s=0, using u,) = 4

.2
:1-}[1 -gsij.‘[:}},
and similarly p% i < 11f1 -p..) =21 + £ Eoc)e
J g kj k]

The above definitions hold for an arbitrary automaton, so now

we restrict the study to | -cells E& ,Wwith environment determined

o T A
by ;;t Hfiuﬂﬁj « The game is zero-sum in expectation rather than
deterministically.

2.2. Pure Saddles.
We shall use the usual game theoretic terminology and first

consider the case of a pure saddle point. Using the optimal boundary
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learning theory of 1.7. , the following result is almost immediate.

Theorem 2.2.7.

For 2 fl-cells acting under %, and if

max min Bon = min max Eunn
m n n m
then 1lim j' .1 2 and lim '|-f-lf'].-} only if (i,j) is a
& Ef';'f" -.]
pure saddle of Eij'

Proof.

We assume that we have a strict saddle, in that Erj{ sij”;sik

with r#i , k#j, and hence that the pure saddle is unique. However,
the proof is easily modified to take care of non-uniqueness, as in

1.6.4. and also in the general Nash Theorem 2.5.1.

As before we use _’ﬂjf“ =r ..|I:: I,kT] [l"-ﬁ‘i E':'r :&L al= 7 I1|

to express the conditional increment.

N #

7] A f=bfYy <0 () | R
W 2 E},Jl,_lj )| ll ﬂ.k‘ﬂ.-;_ WA 9
iy .

i R B

gl fy
Then Ayiﬁu

n

= D

a) We shall first prove convergence. The process can only

i, 4 6(i f #
14 %, & TR (ga-gyl i0)
be absorbed at a boundary ﬁ?‘ﬁ%ﬂ J)] HLJ{ where EU@:J:U- Now we apply
1.7.5. and assume w.l.o.g. that (1,1) is the saddle.

In a small neighbourhood N,. of (1,1), using 1) we obtain:-

11
| 5 =k : e -I]| - +
NN gﬁu(n‘,ul 3 SJ}“ ﬂ[ﬂ'ﬂﬁ 25 'P ‘}hj, )
Then we take 4 Sete .‘ 7 |-¢ gives ,M[ 70 in N,..
and ﬁf?i'é % AT 20 .

Since H’J(y* ]?f} away from boundaries, we are either absorbed

I
at (i,3) # (1,1), or else we eventually enter N,, where T ana

~1
|L are sub-martingales. We modify the argument of 1.7.4. so

= | =y !
that the process is stopped if either | or E leaves H11

If the process were not convergent, we would enter H11

d.
i.o., , but for a s/’mg. #upcraaaings-;,p and we get a contradiction.

/

&) D Clayie] £ Propert - YAZs8 [risrrisnoriEliE




74,
Hence if the process cannot be absorbed at any (i,j) # (1,1),
we converge to (1,1).

b) Suppéme Liw B 5 2 and 1lim ﬁh =l with (j,k) # saddle.
b0 J to o

Then either “1 n s.t. B 7 ng or m s.t. gdmc sﬂk'
Assume w,l.0.g. that 3 Enk ” gjl{ then in neighbourhood ij of

buundary point (j,k) we have:-

+« N1 e ok PTEETR
Aip= § 1 b l]h ( ]n 0 (mag, JfﬁnJ].J i o im) . W)
and take ['u 2 J-E' s.t. Ag 20 in HJ
i
'l'l,,‘ 1 |-
We have 1 Il.llfvlll e lfj-‘l '“l: + ﬂlié-“i in HJk y and iiihl"[:i';]?l{:ii:-'rll
But the learning function ﬁu Ll;h) is optimal and hence boundary

N;]]r. is probabilistically reflecting by 1.7.5. , since all

boundaries communicate.

Hence by a) 1lim | =/ and lim ll e | only if (i,j) is
ke = J
a pure saddle,
/Y
For | =cell games it is useful to define boundary learning
rules with %ﬁh)s § = constant away from boundaries, giving a
centrally learning plateau for mixed strategy trajectories,
Consider the case of 2-actions and g rule glil').
2 :
Define 4‘“‘1 rule s.t. H'.EI!,- B!h,h;r for N<¢ elae
4 @ﬁi: 4% - constant
67 8 [ef-¢)”
ga’r} ﬁﬁ[l s0 | (el&d
l [ } h Similarly for n-actions
T with Q'J l!,“
We then obtain /] 5:* \ )
on li 1 [ /

and ml "‘9 ﬂj 1 [fi_ilsaj I i ]) ] away from boundaries.

| ;
where b{“:: r!jﬂ I = value of the game,
= J
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2.3+ Mixed Strategies.

The analysis of games without pure saddles is both

more difficult and yet more interesting, in that analogies
arise naturally with population processes. Indeed, we can now
reformulate such processes as games between species in an attempt
to give insight to operating mechanisms., Biologists have recently
been searching for such a formulation, as in the paper of Maynard-
Smith (1973).

Also from the Hardy-Weinberg eguations of mathematical genetics

we have p'=(p2w11+2pqw1a)fw where p=frequency of genotype a

1
g=1-p = " " 1 B'E
wij=salective viability of aiaj
2 2
and W= p w11+2pqw12+q Waoge

and p=p' when u=p'/g' = (W ,=w,,)/(w, -w, . ) = p/q.

This equilibrium point is precisely that obtained if the

process is viewed as a game with game matrix w, .. Although

ij
here each "player" is constrained to have the same distribution

over the genotype strategies a, and 8.

In this thesis we shall restrct ourselves to the theoretical
ji=cell framework. We shall examine 2x2 games, althoughy as in chapter 1,
many results can be extended to n-actions. The next lemma indicates
the reason for cyclic behaviour, under any U.L. rule,

Lemma 2.3.1.

A
If there is no pure saddle, then ﬂu;: A

|

is the Von Neumann value of the game.

: () iff

had F i . " g_?‘l- A 4 : A'I__l :
-Jii.' = ﬂ“l- :\) -jl '-;‘? U*l‘“- ?L]jrri %Ijj“hb.}vﬁ‘but this has 5_)

solution A , the V-N optimal mixed strategy.

)
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We find ‘)J = | X “0 and 5 [ 42 "4
[(1+ (4 3;1,{?* ) ;gz ﬂ;“ 51.)
=)/ “* (9u°34) fie jm]_
with }'! ¢ (0,1) //
We shall see that the \,\ also generate the deterministie

trajectories for n-actions fnr a linear U.L. rule, where :{ satisfy

the equations 5), of 2.3.1. In practice, given an arhitrﬂ.Jr;r
By 1 We should use '@.'M with ¢ sufficiently small to give 1:1
lying on the central plateau of B:j[!'] . The Q;J-i;-.] were chosen to
give boundary optimality at pure saddles, whilst §lil rules
give the homogenous central learning for mixed strategies. Ve
shall consider the form of deterministic trajectories around
and we find a naturally arising diffusion of a constant. Such
processes are analysed by Barbour (1973).
For the 2x2 game we use E}_:-l] Tl:fa. we 'fl,ﬂi.ﬂﬁ], E“— (:\"-:\1} mifi; :‘.,:'IL
Lemma 2.3.2. | b
Me (07 an X H ﬁl] then {%,}]_@,:J
iff o), or 1;‘,\|& or }\:ﬂ or MH:J'
Proof.
v 0 (g gu -4 - VL) ) waen G B ()
: . - ov [I-q)
fhﬁ.- Bﬂ [\.Illg.]~ "ﬂu‘f’.""]ﬂn) j 93 BH | 5]
and putting in ), and }.‘1 1.19 obtain:=
(X-s] Ay+ 40 ¥l1-x)
where ﬁfﬁ {H-?j.:l.ﬂ_[jg ‘risgdij'{jdld],l 2 . ,.T [ B\ 1 1
h-ﬂ‘ﬂ‘ W 1*\1!.5'-‘*3;1-3 r'j“] f‘rjﬂj]= [ {x=Aall '5'jr
f}-_‘ﬂw : 5"‘6 [ff'i - Jt' H - le b‘t‘.;\ »1||1'- HJJ fr]-:u‘ ]

with Fi.tﬂ)?u for (e (4]

Now if ﬂn ”ju’ ‘jl-‘-rjq we get ‘fi\'.\ * -’L..
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Hence the only roots are those stated.
i

" It is interesting to note that
" on the boundary ¥ , symmetry
5 + X~ gives us sgn((x-»| . W ) is +ve
«ﬁ: g ff - | precisely half its length.
e o ¥
L% }’ K I .
i1 f \
We also have ‘J[\_bﬁ'\- U'ft 8 and T,j\,f El'l'j'}‘:;l- I;,.):”
< [l 2\
=0 fg { ¢ 5"?
Then k\.lll i 9 .llrlll' X f hr'll ',,
BT ALW = ~| AW LR T L /
A |,. ¥yl | LAt L"tf] /

With our intuition strengthened by the previous lemma, we

shall consider simple properties of the deterministic trajectories.

Theorem 2.3.3.
If deterministically we get o
g = 08, (0 = Gl
:k.-l,-rd--_'_'lq_!.-_- _,.Ejlhi. bl
b B ALt y
with - 93" (1-x)" and k= de

!
i

Then:=- a) The trajectories are (Ifz h"‘| H k =constant

where | f'rl'- s l:’i')'hl / , LJA
g BN
b) The trajectories are periodic, and also if
ET TR
-:}'-tj 7 []ﬁ'”,‘& for }.:}.} and ?.: hj

then all qr are convex.

[\ = - ¢
c) j@& Ui») ot ffj ¢ ° UP‘] Vari'

@‘w
Proof.

a) Suppose | @I"’\J orte ngmj

expressing "energy
conservation',

‘__
"
R

Cn Lr.’lr} trajectories d@ : @1‘ if [i:lj rj - () -

and so -;D} LHa)‘H] /g 3 I_'!' [pj E.’t'lii /

Fidl =
[?“- A. 'Ll' 4’*}'
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and put %— {Jj‘ljll frj&lj" H*H'in and similarly for x.
Then let [E" Eip @:’*Hﬁﬁr'\r =constant as required

r arl | ||qu "‘ A I
If we put 9;-‘ G : ‘E'}-] then A "9:.1@,\

{8yl

hw =
In particular for k=1 ::,lmaf ‘1*"“-‘1] 4

DL bag rﬁﬂ rr(s.jf Ayt f""‘”'f':‘f.[ ¢ (1-2h) b,5 {%1"*‘]‘

T e
and [l.ILM E}.F h:' jfﬂﬁ:

b) For periodicity the result follows as in Volterra's

equations as {ﬁl'l is bounded. Goel et Al (1971) give a proof.

For convexity we examine 2nd derivatives.
|

¥ o = I'. ¥ ( :.'.' ! R
‘j [“‘ )“]i':iuj-'}!.ﬁl"l \Lj lj"').ll'.‘h.; '

i f v X f - 1k f | | 1)
wa Y- [ioh] i DR B " o gl

il ' .ﬂ—\j] L p

Y

| o, \ el ! b
where piy|- ﬂhnml.m.i % &
J
\ | 1
and Lﬂ]};jf (k- :l\-',,ill (| I:’.j = ‘U‘I,

L 1
Y I.' y I f
Now (|} 7() for some x iff '."hlj < ’,iﬁ'-',.! /R
W ;

|
¢ . under given condition.

Hence for qt}.l,‘-.t;-; L{',L]I' < \[i has the appropriate sign,

In particular for k=1 we have convex QT ¢ whilst for k=3,say,

all {;’F are convex if 0-06] "-)'i. <33

Since (I) is tangential to @r 4 we have expected outward

&
drift,stochastically, for convex @’ ydor all ye&l .

c¢) We have EF‘L j“. = 0 using our old notation.
i - r / .| i ]
Thus [,-,. i P :ﬁ[f G0~ ap 5“' ().
-.@:f, J]”f ﬂi ':}‘-1-'1 [] ? : lj‘;J ! k ljvh Id
=

and hence z:ﬂlll. by =
I~ R

b
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= | e
But solutions to this are uniquely ”j = hJ y Where |-
denotes time-averaged ﬂi on the deterministic, continuous time
trajectories.
= Al 2
Hence V= 2 M di» JU.? -
2 M Gij Y = Yoy //

Corollory 2.3.4.

For n-actions and k_1, the trajuctoriaa are given by:-

9% Tl (u Y = yndu

If the optimal strategy is completely mixed, },'l-.:;;?_.l I'j--] s then:-
J

8 jkruhi Snﬂ“ o

Hﬂlb F ol
Proof.

T
a) We wverify that Ja ) on the trajectories.

Hence determiniatically
-h) _ Il ] 7
0§+ - 4 f) s J,Hh)*'z : Jigdy. <0
0 J Sh
_| h
since i\l 2 4 )'J.=I and by definition 1,,1 ﬂJ].‘ ;j 1'.I Uf;
J : L
b) If fa}:‘ﬂi HI'.I then ‘if' ..‘r!h will be clnsed hypersurfaces
; J
around | . Again see Goel et Al (1971) for the treatment of
similar trajectnt:lj.aa. using analogies with statistical mechanics.
L 4 i = |
| J Wi g o B i’ IT!—UB 1“‘] K- ong!
Now ~ j J | ! (o
KTM_ I =Y

r'f

el (S -V
; ,Ejﬁuh Vii}). dr

=

1

But for @*:{, r lﬂﬂllug|l||’1 7() M T3
Thus by the same argument as before .‘ﬁj = }j

»-..

and ‘li"r } U“FI where time average is taken as T 3.+ .
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Lemma 2.3.5.

o
For small oscillations about } with S}: &;“[P;]

a) { df ~ 1“/ e Rl

b) We have ellipses to first order in b A) % J)
- |
with ratio (major/minor) axis ~ (H}'. ffTJTj )'H‘

Jﬁ’ffjt : ﬂ,ti vien 0, E}\i (- ), )

and similarly for y, giving ¢ :, , 9_: ﬂh

Se period = /i / {5;3“'* and E; HNS([’Q; ‘J*'fl

; - B (o303
with ﬁ,—-'Ef (5%5 ‘ ‘J JJ
For }h:i or 1;4'}1 we have circles.

We also see that L {,‘]'} d If;g for all trajectories and k.
S 4

The pursual of the analysis of mixed strategy pames leads
to many difficulties, unless we are to take "large population

approximations™ about the @ =const. However, I shall sketch

why I believe superfluous strategies may vanish deterministically.
Sketch 2.3.6.
-1 \l : ')'f
Let JIJ" .'J be optimal mixed strategies with gﬁ' for
= r
some r,s including, say, }: 0 . Then if lhy €e UU S.t. -};'1:'
— .:-1
then for large T we obtain ’T szﬂ / E' g (WHJ 2 i’jlj H'}'] <0,

JET
By definition a Buperflunus atrategr has fﬂ m éu at the

saddle and TJ*)} Um]= mrj near Q‘ -canst Thus fﬂ ~]i'ﬂ

and HL'Q is stable, A more rigorous treatment may show this
naive argument to be false. 7/
H”’
=il
Althourh we may begin with q i '|'| ' as trajectories with

some i,j, a.t.[lﬂ * mﬂ we hope asymtotically to obtain the optimal
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of the reduced square matrix. It seems plausible that

0
| -cells may automatiecally proceed through an algorithm of the

type described by Karlin (1959 p50-51), in their attempt to
maximize payoff at each trial.

It is precisely the U.L. property which enables i-cells

to discrminate between arbitrarily small differences in payoff

(as ?-ia.} ) and hence give such natural trajectories around }':?" H

by
IIJ i)

Lemma 2.3.7.
In a pure saddle with Z2-strategies, at least one of
and 1\.{{ are semi-martingales, throughout their domain.
Proof.
i
We hawve \,Ed-l— so at least one of rj-ltﬂ or [k-‘}*;‘] has
constant sign. Vi
ﬂﬂrullﬂrz 2-3-3.
Under K with ssddle (1,1) sit, ‘},EJ- § Lo 1.
B A
then lim 1lim Tj;|tj=/.
B0 170
Froof.
This result is due to the domination of strategy i.
=T =
}34&'] =7 gﬂul-[;]}-ﬂl for all “1‘: away from the boundary
result.
/o

and now apply 1.4.5. for the

This corollory indicates the type of difficulty we encounter
for n 2 actions, using &L when there are usually noc dominating

strategies. Boundary learning is then essential to achieve optimality.

Lemma 2,5%5.9.
lim

Underfl, 1 (4,j)s.t. (7 ].*-]f ['lr.')
fa MR

Proof,
This is an application of 1.5.7. since L“‘a }JL:' so eventually

each @h will take some strategy infinitely often.
//
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We know that 2.3.9. is false for optimal rules by 2.2.1. ,
but this does not prevent 1hn & sy Bo that we ¢ycle arbitrarily
close to the boundary. We cnuld prove this by showing that ﬁ
is a super-martingale, which certainly seems to be true for convex 5
However, a rigorous treatment would involve much manipulation, so
we shall leave it as a conjecture.

Whilst the mixed strategy behaviour gives insight into the
operation of U.L. rules, the /i -cells are more suitable when optimal
strategies are pure. To preserve cyclic trajectories as a deterministic
structure we could use networks of | -cells, which are considered
in the next chapter, or the structured automata of Krinskii (1963, 1966).

We can actually avoid dealing with superfluous strategies
by choosing a class of games which admits a unique completely
mixed saddle, such as the Minkowski-Leontief form of economiec

theory.

) Nelod) Yij b) Ne@), Xeld). ¢ N XNé@mI

2

3 1 ¢ M N g R o
— T 3
The basic forms of @r =constant for zero-sum games are
sketched above. It is to be emphasised that the Ji-cell achieves
optimal deterministic time-averaged behaviour, without any
knowledge of the opponents strategy; omly if its own strategy
is successful., For convergence toll Brown (see Karlin (1959))

required both players to possess complete knowledge of the past,

and even then convergence is by no means easy to prove. Note that the

theory in this section is easily extended to cover the cases with

l elo 11 for some i,j, which occurs when g =g . for some (r,t) £ (myn).
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2.4, General Sum ji-cell Games.

Definition 2.%.1.

i) Let E].‘:j = expected reward for KN ji=cell if @‘ uses u,
$, uses ug

R 1 ok o2
as before B; 5 =94 47Pi and q;= %C1+T gij“;l}'
1i) A Nash Point is defined as (i,j) s.t. g;d > g;j nfi
£ 2
Eij > Eil:l. nfj

We proceed as before, omitting the convergence proof until

we treat n-automata games, with the most general Nash convergence theorem.

Lemma 2.4.2.

For 2x2 matrix games the deterministic, continuous time

Ty o
trajectories are given by [ET‘ Hihillr‘ﬂ' =constant, for linear U.L,
iy d° rules,
i__ [ “:\'. I 7 i_ F
= (-1 N/ 0-6, (¢ -4 4
w0 g Jf:‘"h Iin)

T
-~
"
ol

and ?;1,}\. I;:UI fq

e

rt fxe fise Eﬁ{l-r«}(j--hj\
ﬁﬂ’ N, - ijf*g]h*hl
Thus find | s.t. dé_ on trajectories.

@: X 4 @” -0 if @,‘ (K*h,-]fif"";fi*a)

gy
or J.-Up i;:aih]Ar li—-h.lﬁj['ﬁ'lﬂ ! (Wﬂ* () i)}

and hence result. //

Corollory 2.4.3.
i
Under non-linear U.L. rules ﬁ[ﬂ]f i U'“J z

@’: Fb.] / ﬁlel, = constant with r[‘] L ( J’[}‘ )l‘l] i‘/ a“lf;lf",'.‘-,.”h:jm') :
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Proof.
" - D= . |k :
- ] ] 1 1 |
We have @1‘" (1 )la} /E.-T (lfl’?'ll and similarly for ij
and now integrate.
For zero-sum games ﬁ}f ﬁd « () so we obtain f(x) f(y) = const

as in. 2-3-3- a]'l x/

Lemma 2-1"-!"-
1
For 2x2 games @ is periedic iff:-
.I - J }I i al
 wehd) Vi ol (o0, i T<0),
or b) there are no MNash points.

Proof.

We shall assume a linear U.L. rule sc that we can see the

form of @T explicitly. However the result is true for all U.L, rules.

a) If }}t[iq and {JSJ IH Jlfﬁj ‘then

R (5" ff*ﬂ"h’)% iiqLJ ['I-ﬂwj] N .
or glx)h(y) = unnatantu&nd 15 periodic since
g(x), hly) are boundedson [0;4); aesuming. #20g:w.L.0ue.
1t 7% ana ;0  say, then either 3b~J or I:{IJJ will

be unbounded, giving hyperbolic trajectories.

Similarly if }51# (o) for some i,j.
Now using a) we prove b),
Suppose I a Nash point at (1,1) ! *'-‘.'E.t g v 2
PP P ’ Bax S Bqq 0 B4y ¥ Enp
S0 750 i el
Then (| 70, I if ‘:-\.}t 4] and we have a contradiction.
And if qu‘ is periodic we get g..,< g.. as contradiction.
11° 821
/7
Corollory 2.4.5.
1) 1f 3 2 Nash Points then §-( forms a saddle.
ii) If ] only one Nash Point then 7J }jq;{D,JJ :
iii) J ‘q’h(ﬁ".- H ot Sk ; the equilibrium winnings.

@§¢ /Iw d}
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Proof.

i) We take (1,1) and (2,2) as Nash points w.l.o0.g.

1, 4 3.2 7 . g . .
Then §;1¢Bq9 v 8197815 v B 7813 v Bpp7 8y ¢

and hence HHU F?Q and }ié wﬁ)
We get the result for (1,2) and (2,1) by symmetry.

Now construct the trajectories around 1 as in the sketch below.

ii) This is immediate. Again, as in zero-sum games, we have

either a) '}}¢{&d 954 with ﬁ:.Tc s/mg, giving process
at least / -optimal .
or b) }jEMJL hziﬁ.% say , and again a result analogous to
2.3.8 will hold.

iii) Just index V by superfix k in 2.3.3. c¢) for the result.
IR [; k
so that VO(i'] = V",
s Nash

: -k
A1l §:¢ end at W€ Eﬁ'. ﬂ-

-

and are essentially

hyperbolic around the

e =t

S0y saddle,
ﬂmh G ﬁ: e 4
This is the only other basic form we need to consider. Again

the theory is easily extended to cover the special cases of

: for some 1i,j.
M 0.1} ] 45

2.5, n=Automata Games,

Definition 2.5.7.

k
1) Let P;‘. = expected reward to ®h if @.L takes 4. .

ii) Let Pf'(.}uu{s’)
iii) We Put 35 i rﬁ and to emphasise ﬁh we shall
use “{ it £, 5‘1m‘:iuﬂ1 ﬂ rﬁg «(Note, g, is put only asa
left suffix in thia nctation with ,a' =(g, Brrs By e )
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R - A .F'. - Ja‘|
P - o
iv) P'l' 1|||' %'jﬁ"ﬂul as %r ‘].. Y.
IFI. A I‘q, | 1:1| | }; K lI- h
Then [l = - & 2500 W) Vs 4 5
I-“'.'_ o y . L ;'ﬂ ! | |
£ 0 YL e el !
with | as before and :-L,h H: § | i}'hl:;: | it o i]’:-;,ffl

' L g i v A *d ‘ iy +

Theorem 2.5.7.

1
1

If | a Nash FPoint then we converge a.s. to some Nash F
-

under *k P

Proof.

Again using our boundary learning theory, the result is just

a generalization of 2.2.1.
% o
Assume w.l.o.g. that I ° i"hiﬂ Nash.
! X '
80 i o i
}Q.f%“! ‘ 'jf ik

a) We first prove convergence by examining the probabilistic

baun&ary atability. In a Bmall ¢ =neighbourhood of 1 we have:-
4 lt , e o
._l'lII I / b'] {u :|L e 1|‘}l + I'}|m.-s;' 2, ol ,.'uJ:
J i ]
and we can ta.ke £ 8.t for ]' le Yk, fmt‘}g :

.I’ i3 i"lr '.-'

We effectively have a boundary learning process with time dependent qif .
=

We "stop" the process if any !_]F leaves the ¢ =nbd N, .+ Then we

obtain convergence by 1.7.5. as in 2.2.1.

Martingale theory is not essential here, for we can always use a
staircase form of argument (1.11,3.) at boundaries to give Nash
convergence, and also to give more intuitive insight.

wd =1
b) Suppose ]]j t : J”F— T] with 2 not Nash.

Then as in 2.2.1. 7 | ',h s.t. M‘”th 0 in g z -nbd and

=

then under |.h| we have instability and the boundary learning theorem

-k i
1.7.5. gives ly+7 |/ 8o /| is not an absobing boundary.

4
Hence, since boundaries communicate,

lim Ek(t) =1 only if J;Tk = i is component of Nash Point, g-

& ff‘aﬂ 4 &
G ﬂ,, ! only if 4 is Nash Point, //

| e ]
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In this most general case we have the difficulty of the
non-unicueness of Nash Point , but in many simple games we actually
find the Nash Point is unique, as in 2.5.4%.,2.5.5.below,

We apply 2.5.2 to games considered by Russian authors,
initiated by Tsetlin (1953), in the context of structured automata.
I believe that it is more natural to use unstructured automata,
in particular,’| -cells, whenever we wish autonomous tracking
to probabilistically stable boundaries. We only require structure to fix
optimal non-boundary behaviour ( as in eyclic 6?:&] s in a new
boundary formulation.

Tsetlin called the following homogenous games and his papers

give computer simulations rather than convergence proofs.

Example 2.5.3. The Investment Game.

Let f?—n’L:_ n 2dys 0 amd Y7 ) = no of players
|
and qum_sPr( reward using i if my automata use it),
j
A, s, :
so =Y AE g occurs m; times.
¥ q«,ﬁ. fm.' Id _\'\ U
Then a Nash Point occurs if -;(','I.- 3 |'rc.'J / | -'J_J,
m; B g )

We can prove this exists by induction; if "{'& {oly then result,
else put 4r<'%ﬁ fcﬁh and continue re-ordering until stable.

It is unclear whether the result is unigue w.r.t.fﬂe;h m~ at
R L PR

u.?
a lash Point.

Now if we allow ii=cells to play this game under ?ﬂ y then

hn’

2.5.2. gives Nash convergence with '.fj; I ([
ek ‘m
M i 4

Example 2.5.4. Investment Game with Common Bank,

\

ko) Ay
lNow put { P !’ﬂ 2 |i eri] to give the investment game
= i u
J

with common bank = we share out winnings.

Then g?: {dLﬁE--- _ﬁn) or a permutation gives a unigue Nash

Bl Oy Diaywel £ Pronert - Yazs [nisrnziore) &




84.
Point in M:1 ., Eachj -cell asymtotically takes a different
action from the set of the n best actions. If a %i fails then
the remaining %]Fi converge to Nash Point lf.::.__ n",,.l[ . Tsetlin
calls this feature of behaviour "reliability",
1-" a |I A I'| =
So put ’j = 4 | | 2 J,-m-J‘l where m, li-cells take

IIE O d

action J as given byjj F
Besides being a Nash Poimt, this solution Jéf is also a More Point

in that we achieve maximum payoff. 7/

Example 2,5.5. The Gur Game.

Let there be 2 strategies 0O, and 1 say, and

'm
reward probability = [|7| for all players.

number of li-cells using 1.

n " L

=]
n

-

mi
a

| have a unique maximum at g.?

And let }«’[ 5aY.

’
This is the CGur game described by Borovikov and Bryzgalov (1965).

3 o (B (B r 1] o gl ) e

= ﬂ]:% > ?flrgllj"l Vi ar £ s m li-cells take 1.

We see that this is really a simple case of the previous example
in that winnings are shared, with a choice of just 2 actioms.
However, it is a fundamental form and more recently Schmukler (1970)
has considered it in more depth.
Using 2.5.2. we achieve a.s. convergence to the Nash Point.
/Y
| ~cells can only achieve competitive solutions (Nash) since
U.L. ensures maximum reward at the next trial.(asymtotically)
So a j-cell will always try to '"double cross" its opponents
unless we reformulate the game as in 2.5.5. , to ensure that
this would feed back on to its payoff, converting perhaps a Pareto

optimum to a Nash Point.
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Chapter 3.

" Urganic life develops away from the concentric
unicellular phase as the evolution of the species
develops, and progresses along an axis, taking a

direction and discovering aims."
Le Corbusier.

( La Ville Radieuse, 1935)
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e Structured Automata.

3.1. The Model for || -cell Networks.

We have seen that the il -cell responds asymtotically
only to the environmental equilibrium probabilities. (1.12.9.
and 2.3%.%.) We shall now introduce a structure which responds
to environmental fluctuations through utilizing optimal boundary
learning (1.5.12.) to ensure, asymtotically a deterministic
graph, Tsetlin (1961) introduced non-evolving structured automata
in {m and Vorontsova and Varshavskii (1954) conducted computer
simulations on structures evolving under thefﬁ-rule of Luce (1959).
These simulations indicated that an initially random graph will
converge to a quasi-linear graph resembling Tsetlin's automata,
with near optimal payoff.

Since then, both Fu, in Mendel and Fu(1969), and Feichtinger
(1970) have carried out an analysis similar to that of Vorontsova
and Varshavskii, for static [ , repeating the same errors when
considering increments in transition probabilities. This is
almost certainly due to their being unaware of the work of Norman
( 1966 - 1974). Yet even then there is a considerable amount
of additional analysis required if we wish to apply uniform
learning rules to il -cell networks. The theory developed in
chapter 1 now enables us to provide such an analytical basie

for the evolution of stochastic automata with structure,.
Definitions %5.1.1.

i) We define environment [Eiljiﬁ-4;ja} with
| { Pl

Kig

Pr( Ei(t)~?Eﬁft+1}J. where E  is the environment state o .

1

f;ﬂ&1 Pr(stimulus s_(t) = 55§D,1El ui(t} and E (t)).
and Eﬂt] = (s,(t), s,(t)), each s, independent with probability J;HJ”

I
|

as above.
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This vector stimulus s(t) is used to enable the structure
characterization theorems to be proved as a generalization of
the method used in 1.12.9. We shall see that this definition
prevents the process from "overlapping", just as for j-cell
games we had a stochasticzero-sum rather than deterministic

ZErO=5um game.

ii) Let the automaton transition probabilities be given by:-

lT.J m Pf '“‘l“ﬂ |5 ” ¢ 10, ﬂ; where x, denotes state i.

iii) Let I'. = H}dh : T|—1_’,E',i[ @i is always uaedj

and FFIJ-‘[I]r- Pr( for ﬁli we use u,(t) at time t)

J

iv) The reinforcement rules are uniformly learning for

both (i and I .
| : | .
ﬂ‘&(l'tf' .!L[,* J. ”J'] l]‘NI .. ' if s,(t)=s
in xi{t} and X7 X with s1ft+‘|} = 1.
g, B
ﬁﬁhfﬂ ( ”1) it s, (t)=s

in x5 (t) and x.—x

i |
|
j e

r!lI .
'ﬁJJ if s,(t+1) = 0.

with 51(t+1] = 15

Tfl.

hl.

and with normalisation fﬁ {f’r]] Vl 5.

4

v) For {§ we have s, {t} = 8 with probability Z ” 1
/
if E, ,s0 that each pair s,(t), s,(t) are independent nnce we

are in a certain x.(t).

J
vi) If i € Fh in definition iv) above then we reinforce

"]hil as below.

Ik o

y __k; | -]:; LT Ih i\
Ul ll‘fl:l: I.'j .li"lnf &JJ lLlrj" =M '.Iil- if 51(t3=71 “j{t’:'-
- | b f [ Al Y il =
11 20 (- B i 1 8y (8)=10 vy (6.
'k.: .'| |I| h =
bilrel - hjh i LEave) =
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Wwith normalization {_U: [j 1.|J' z l TR
J

The state transition is made independent of s,lct}. even
though this would give us more information on /[, . However,
if we just used 51(tJ=sE(t)=a(t}, then although it seems likely
that we would obtain similar limiting structures, we could not
split the process with respect to conditional expectation of

increments in ﬂ';," . Thus the the vector stimulus s(t) is more

a technical de‘vijce for proving theorems rather than an intrinsic
feature of the learning process.

The same ||-cell @h can be reinforced from any state Jf]-'h o
Only through this formulation can we obtain evolving ii-cell
networks with "memory", and we shall discuss the partitioning
of actions in section 3.7.

We denote this network of I -cells by { |{|| . We shall first
i

consider the case in which we have I, 1‘3(-'19.*.;- E«"ﬁ s0 that only
]

b
'.j evolves.

W
{T]-IIIJ} |
— 3 xi(t) 51(t) szft} > x_j{t+1} 51(t+1} | aaftﬂ}n—}
[}
. 20 o, lg )
where aa(t} are received with probability T_ij{] i in B §

This does impose some initial structure, but we shall consider
the complete case of simultaneous .f? and T-'; reinforcement
later. It will then be seen that this adds very little to the
analysis of limiting structures, and vet we can then immediately
generalise to hierarchies of | ~cells Ej’qfﬂ‘]lin 3.9.
ﬂ1-ce11 which is just a single
action taken with probability 1. Rather than refer to this as

it il'jt'y].ﬂl then we have a

a ﬂ1-cell network we shall use the term structured automaton.
In the next section we begin by showing the relationship between

A
structures and |-cells. The structured automaton is denoted g IL@
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with @ as a ﬁ1-c311, or eguivalently, an action.

3.2. Static Environments.

We shall prove that an evolving structured automaton
asymtotically maximizes the payoff in a statiec environment [f)
Thus it performs the same funetion as a singleton 7 -cell,
Definitions 3.2.7.

i) Let g’"}\ dl‘ﬂ for 8,(t)=s and x,(t).
Indeed, here we could put s,=s,=s, but we shall keep to s(t)

in order to avoid confusion.
ii) Let ﬂﬁi tl g '"'..L“'J 13“ ] )

where _]'l’ is the field of ﬁvents for 0st'c t and also includes

8
F ij{t}. s5,(t).

We could define 51(1;} and azitﬁ} say, so that at actually contains
all events at times t'< t, but since we are more concerned with

the concepts rather than complete rigour, we shall just split

the process at 31(1:}, as in the diagram of 3.1.

A 3

’ i 1 l’ﬂr A

For static environments:- [\f i} H.“‘““ [f;;“” C:, *& At ']I E u-EI[:,'
i

iii) A state i will be called +ve recurrent if

not 1im’s (t) = 0.
t32

Theorem 342-2-
In a static environment under ﬂ';] -

a) 1im @l Vi€ 0] Hr.J_
Pl ) [

b) If i is +ve recurrent then lim f.T?-':j]=] for msome j

Fa0

A
s.t. 9,219 k.
Proof. J k

v v gl g € £ 044 90

T e
and for ;)9 we find ‘jﬁ:juia’ﬂ Vi

B4 %
a) Now by semi-martingale convergence theorem, ﬁ'fl- :; U'.i .

x i ;
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How proceed by induction on ql in order of magnitude as

in 1.5.1. to obtain the result for a).

b) If ﬂﬁ%}f} except at aJs}a /) then 1! ¢fo,) and by
n-action optimality theorem for ﬁ, A 1.5.4. we obtain
L-:f only if q}a q;;V k.

Similarly, if ﬂ,fj =) withgy =g Yk, then we obtain
the result since the conditional variance must vanish at ?% i
as for the singleton; =-cell.

It is easier to put:=-

B [t] % [Hrl |f iy ] |}

for we now ohtaln a h-cell if i is +ve recurrent. But for dynamic

environments we gain more insight by using the definition of 3.2.7.
and so we have adopted it here also.
!/
S50 the +ve recurrent states form a deterministic, connected
structure with qi=qj: max ék ¥ 1.3 st 'f i; 0 where
AF f: qJ J' : hm lg[ﬂ limiting time-averaged §[ﬂ

t7or
Thus a structured autnmﬂtnn maximizes its payoff in a static

and on considering q; @s a ﬁ1 -cell, Q , we have that the absorbing

class is a subset of [I opt”

Also for each (i,s) lI}i'?!| acts as a ji-cell with links i-» j
as actions.
Corollory 3.2.3.

For ﬁ'(i] in under R; 1=

a) hm Gievie [0 Wiy ad limogl-v: Yips
b0 J ) Ll b | H g
b} If i is +ve recurrent,iérk then
ik
i) lin IlJ—I for some § s.t. agza. Ym,
ii) lim 6{ ] for some j s.t. 44794 Y.

I j
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Proof
| i f
-l ) rj' ' b || | L
Now ﬂu SRR 3*} th.]
SRR A LB P e L)
.--|-|"I Uy - fr,,'lll i;.l._] I'j IJJ FTl "I \{‘I -::M‘I Julm l |I_i :IJ|-
and as in 3.2.2. ﬁ?ﬁ ﬁ as 9 and then by induction.

find for JIUPL we must consider boundary behaviour, so let N?
be a neighbourhood of \J! s.t. :,‘--IJ-' [ce‘ Y.
4 L) o BN 4 0
LJ'.‘,H é’nlo 'j “].,in f? i Jhlfuﬂ E Uy 0l ll1
J wi J* and Rff} ) nﬂ; Iy
and F[Itij'] is arbitrarily small, compared with

the leading terms,as in 2.5.2.

o

Now order édu LI and take m® s.t. fv:“if 7 QU:;{; E.”ﬂ?.

If Hn then ﬂg: -;‘-‘L':' and we approach a martingale

h

ﬁlllm e
slg £y
form, from which we can obtain convergence ﬁﬁfauﬁ =

If the limiting | -cell payoffs are unequal, then we successively
form semi-martingales for the result, as in 1.3.1,
If i is +ve recurrent, then the conditional wariance > 0

oA p i o
gives "JL Fy ¢ }]U' |'1 since not |im '? l,v]-u (Note that this limit
! b
will only exist in the non +ve recurrent case).
In neighbourhood ri‘:'j' of '-'j we can apply optimal boundary
¢ |
learning theory for sem-martingale (| as in 1.7.4, , since all
Jd
boundaries communicate. (Note that the +ve recurrent set of states
is non-empty for all finite automata).
Again, as in 2.5.2. , we can use a staircase construction

instead on martingale theory to give us convergence only to

stable boundaries. !/

A j=cell petwork thus has the same limiting payoff as a
singleton i -cell in static .m y 80 we certainly loose nothing

( apart from simplicity) by this extension.

Our aim is to allow %'iﬁ;] to adapt to a dynamic ||| through
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use of the equilibrium distribution fer E?j -« This adaptation
will characterise a certain family of structures related to the
work of Tsetlin (1961) and Stratonovich (1964) in that we
discretize bayesian updating in the environmental likelihood
simplex. First we strengthen our intuition by considering some

simple properties of deterministic structures in dynamic [T\ .

3+53« Evolution in a Z2-Medium,

]}Efinitinnﬂ 3[3111
i) Let 'ii = prob{ E_, , in equilibr'ium] in state i).

so f”‘f“ /’ﬁ ~ with ¥ =prob( By and x,, in equilibrium).

":1
ii) The symmetric 2-medium m'lﬁup [11;' } is defined as:=

:J"F . [rj—ﬁ‘ ér\ and q) =qg =q, =aq =q.
0 -4 |

10_ 00_ 11_01___,
qal —q.o —qO —q.1. =p=1=q.

The results from the analysis here have natural extensions
to many other ,{m and in the following section 3.4. we consider
the symmetric n-medium m.. .

iii) Let the structured automaton Ln 4 be defined as:-
5:!‘

520 s:ﬂ :
3 Fa xm m

and so that L,h.I

is just:- 5=l
and for 1£icn 1¢ F,

n+1 £ i=2n ir;f—'u.

This Lrl = is the basic linear symmetric automaton.
L ]

Lemma 3.3.2.

a2 §- I- &‘f{[i-l:?] for 1

e B
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6.
; g

o
4 r v
b] ?ﬁw ' ?r{n as for L n

|

[fﬂ'meﬂ-J ind eil!".hﬂ : 1‘% erfjﬁ L.

e) ?:., ‘i iff H"g]fﬂau E ];&- for L,  where

- -— 4 ¢
d) ﬂ{Lh\]'E(LhE AEL %ﬂ-is

tl

with n=2, where

R = average payoff = 5 "‘Fcu“

-

#,

Proof.
W sowe AP J o o) 1)
\} AR 4 (i' J' '

b) Solve 1) for LlEl o @8 in the paper of Tsetlin (1961) and

. ] / g |
then show that i,f b ow YS! and hence that T s r
i ".f.l' L ?I'H <n
i
and similarly for ﬁ”n”? as I‘\L .

¢) Again, as in b), the result arises from manipulation

and its truth is eclosely linked with our next result d).

d) It can be shown that 'ﬁan n} = tanh(ny/2) 2}
1
coth(y/2)+nlcoth (ny)

i T Ly
it-h W *-BI{!“;}EI]]{II!'F)L

and cosh(y) as before.

Using c) we obtainfg =.q if Iﬁﬁilijj-l‘l:} = {ﬂﬁ}m“l

or cosh(y)= |\|:é -]IIJ

fy (]
and substituting for cosh(y) gives “"h '.f:r. T fﬁ’

But Tsetlin (1963) gives this as the condition for R(L, ,) = R(L, ,)
L] 2

and indeed it is not too difficult to verify this using 2).
//

The result d) is almost certainly false for the general
case when R{Ln,n}=R(Ln-1,n—1}’ and this is related to the optimal
automaton not possessing the SOSA property (self-one-step-ahead)

except for L, ,. This property is defined in %.35. and considered
1
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in detail in subseguent sections.

The manipulation required to achieve the above results is
most tedious and so apart from a), they have not been extended
to mn even though they almost certainly exist.

We shall now see the relevanee of 3.3.2, in giving rise
to the family of limiting structures denoted by ;P[p « Firet we
consider the fine structure of the process before taking the
equilibrium values which 'ﬁ, utilizes.
Definitions 3.3.3.

i) Let @ﬁh]:pr( in B g | in state j at time t).
ii) Let W'l =Pr( in B, and state i at t).
iii) Let f-l't\ =Pr(in state i at time t).

iv) We define _H [g‘, §

J [

: '| | [ ;;'.2, ! "
lNow by bayesian rules let 'hi " .Iq- t; ,-LJ.LH 4 3)
i E T ?Q“’{d;’hq
6 14
and where s,(t) and ujl't) are used in xj{t:!.
n"| /
Now we receive s, (t+1) and “'*l h“, 2 gt f
; 62, /| gt.mf_.|{h|},uj“} b)
LR
50 using 3) and 4) we have @'1 7 Oy e,

/ ] 2% % |
vow G4l - ¢ @?ilq-*ﬂf ’ﬂfq?hﬁji' 5)

so @TI \ fU [|"II| ,r‘;.lrr'

Hence we generate our conditional prubnhi}.itiea by inductively using

3)-7 5), and ﬁsﬁj[r]y )] g .I} S0 -

i

-

Note that we can take !{g‘_h] 2 U Jﬁ ' / 6)

4 zu“ﬁﬁﬁ%
for the § wupdating and the result is the same as if we had
Lo
two successive updatings, for the s,(t) and s,(t+1) taken individually.
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Lemma 3.3.4.
i AT - ST A B
i) If}g;l is constant then ()" <7 n. * i- e Hﬁ
Where "‘]" 1 f' *jja fi'm. J> . -}l'-: E/F.r" and ﬁi“ = "}f’m f:’

.y ] i
J

A i o g ;
L ) T Rl A X
J -f‘i - J |4 ¥ L]

a - Nii T
End R.[L' E]jh ':'IIE!:B' !a":‘_?"} = reward comparison function.

W

Proof.

i) This is a conseqguence of bayes rule and we indeed also

P e n#ﬂ

have l[p 2w, | @ and this is proved by writing out all

poasihilities .

3]

As | ¢ .5 (5l
11) J’Bl*] 2 W JH 3 ik by 9',&[11’#.'1”1) - g
" 4 (. L ;i !
‘o

but by i) we have the result immediately since we just update

Jr‘—'tl..

Wers.t. the stimulus ua[t] to determine our expected payoffs on

taking an action at the next trial.
//

Lemma 3.35.5.

The maximum average payoff is achieved by the bayesian rule:-

. A MadS A/
Let a) [:Jer l[-j'[] E L?[ﬂ;} -ﬂ{f.‘ ﬂll.}nﬁ J‘I‘gwqu% if s(t)=s and

use u, (t).
1
where [y [f|=Pr( in E, at time t).

[l i) :
Then b) At time t+1 take u; only if < li] - ql' 120 H:
q' ¥ y ; L)
/Here we have the simplified model with single scalar stimulus s , \

i
| are known,

||' and we assume that the environmental parameters Iﬁ*}d ] {:'
I

| so that only E is unknown. For vector stimulus we modify a) in a
similar way to eqn 6).
Prﬁof'

Stratonovich (1964) proves this. //

Thus the 0.5.A. policy is optimal here since environmental
information is"gained equally from all states'". It is for this

reason that our discrete automaton will achieve environmental
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adaptation, using reinforcement only over successive trials.
We now consider evolving automata in /]|, and our next theorem
gives both existence and characterization of the limiting family

of structures.

Theorem 3.3.6.

In {m under Ru with g, 1-{}1}.

a) 66 2| omyif f{uf-'!?q with :r‘.pd, dt Fl

4

b) 5??"\ only ifs "J"f’ with Jf:F,

where q“ q for | ¢ Fi say 1<4i<n
and ‘-'!i1 =q for It Pﬂ say n+1<1i<2n

o 1 o0
Thus we have 9; =9, a2nd g =p for 1 € ]L
L Y
c) f}":’vij' tﬁ}ﬁ is. for +ve recurrent i.

Proof.

We write out the axpected incremants'

[W-.j(ﬂ’ 5U;Hf4[r J ( g ffﬂa JJ.H i),

71
Bait = sy, MG er rl (6i-p) & 65 83 (163)
| uf';-r Vi
where s, = +1 if V:J and Li .I'Ig. _)g F;.

-1 if VFT e (I 'Jr}{jz

St

Consider now ]{,fjﬁ‘, fixed so that we can consider the process
for each state as a random walk defined on the environment markov
chain., Thus near the boundary absorbing set we can apply the
techniques of section 1.12., which were used to prove 1.12.9.

Here for each state i:_we have an underlying markov process with

L]
equilibrium distribution 'Tf(ﬁ,-j || , which is an example of the

type of process considered by Miller (1962).

o Aph g ol oY o Bl feld
mes Ao suK%d7 (8 1 £, Gl o
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R T I “',"ﬁ{iﬁ
Ach = 540 K d'-,.-\ DT E-:l*{m '”Jh”hyl]- 1)

-
where ‘_M"sj £ mean increment in a'f’ We.r.t. the equilibrium process.
We can do this since the process is split up by the vector stimulus
E(t} so that successive increments do not '"everlap", as shown in 3.1.
We now apply optimal houndary learning in a dynamic medium
for the result ( 1.7.5. 1.12.9, ) which is now immediate from
7) and 8), noting that:-
i) A limiting structure always exists since oL, is stable
with 3‘: = (i* Iﬂr[i-’ F} ? -;;3 . Convergence to stable ;oundaries
follows by nﬁi-staircase construection as in 1.12.9. for each
+ve recurrent state. This gives us ¢) and a non-empty limiting

set of structures.

ii) If §; % then the only stable limit is ,L] as below
=

579 ? i
Fq ;Z 320

521
iii) If q4« # then the only stable structure is oL, + assuming

also §<3.
4 : %
iv) Although ﬂﬁ“ 20 say for all JE-J]; : JE'FQ jlll- f' r?’
we get convergence to just one Pé ﬂ y a6 in the n-action theorem
with multiple optima 1.6.4. The dynamic medium adds nothing for
o 1 =
if we have 2-actions with [{I'$: tl‘“ Ya then ﬂ.‘l]*ﬂ for

a1 [

Thus in contrast with bayesian rules which oscillate if we

, as we have a martingale.
try to decide between 2 identical hypotheses, our U.L. rules still
give boundary convergence, This property is important in their
application to |j-cell networks,

v) The +ve recurrent states i are those with r?bl l"frl.r,kl'}rrﬂ.
: //

Coreollory 3.3.7.
m fl, a) i are stavle if S g
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by1e | 1|=a]/1 ?

then L, is the unique and optimal limit, when é‘ .

271
Proof.
I L
a) We have 3;91 gives J-?j&fn and by 3.3.2.
e 4 ; ! : f
lfi as fb with SLI?E iff fmwfgﬁjﬁ H

b) This is just case d) of 3.3.2. where 5L, is stable
-

iff it is optimal, and uniqueness follows easily.

i
Theorem 3.3.6. actually gives 1—553 if and only if we
maximize the expected reward at the next trial w.r.t. the eguilibrium

of
distribution rﬁ in our present state. So we essentially have

- r
each - as a jj-cell @m] in medium with equilibrium | and

transitions («1)-7 () with probability ;14!5 7Y ,and with

]
{

4
actions uj' Thus we have ﬂi as a process defined on a markov

chain in the manner of Miller (1962) and Keilson and Wishart (1965),

in the slow learning limit ﬁ%ﬂ « The fa processes then interact
[
1

through %qlﬂ-

: to give a certain family of stable solutions
which all have the S05A property. Thus we just need apply 1.12.9. to

Definition 3.3.8, R0kt eﬁ@ﬁ] for 3.3.6.

i} A deterministic automaton has the SOSA property if for

LR A
#

i
b
oo o
where Y-« 'f,‘)z;’-_,_ =Pr( in E;| in x;). (SOSA ~ self-one-step-ahead).
i

§
every state i, we have V| ’] only if v, maximizes j; {iﬂ44?
| i gk 2

ii) We denote the family of automata with the SOSA property by fiw .

Thus the automaton maximizes the payoff at the next trial

war.t. its own eguilibrium distribution over states and environments.
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3.%. FEvolution in an n-Medium.

Definition 3.4.1.

L] 1
i) We define the s:,rmmetric n-medium /Ul l‘qn{!g j'..} | as:-

A e (1AW, ¢ E' - af
a) 'L‘r’" ( g fm*n,i b) qi =4 =iy o else 1-q=p,
\ 4 TR | i d,|
t VE} g
\ 4 ) nd ey if s &
..,t.'] sl‘_. - 3 j':l =
So A 4 with : .ﬁr\ﬁ |

-']uf (- n- I\f] L 4

ii) The automaton L, has transitions

B with

|
Vo, =} so0 that we have

=

with

n indicating the number of states.

We now prove a lemma similar in nature to 3.3.2.

Lemma 3.4.2,
1t b<lp ena q 7% then:-

a) '\Tr"rJ( in r for I'1'

b) RE L, }?p+E(q-—p}/n} » which is the §i -cell limit in

m under ‘E "

c) nl"1 has the S0SA property whilst

acly 18 ROt 505A in | N

-:I}R{L),?R(liml. ) in s .

54 R-P
=
e) RL’LH_P = R( L..IJ. in any static environment.
Proof.
5. 2 .-"-TU S
a) Solve ?J '_4'?':#'4 i "'*'J ‘ﬁ-rf to get

(L Iy
(- 0y

with o (’%*Jnﬁm |

[

&) Oy Dawviel E Prabert - VA28 Inisrnatonezl




1035,

i [ f { | 1) rnl -t s
and Y, - l-'ffl'lt'if"'"-‘!l:fl |‘ l{,ﬂp]]* & ]Im‘ o -i) > /s

Iy 1
! :_Jfrj.{uF

with B ([+ fiy ‘t’ﬁr .
¥ ]

and for L‘I} '\f”rﬁl:ﬂf'}l’l . é'-"f'ﬂ, ﬂh"?:; IPJT_,S-

g~
Clearly then |, {'r by combining the results above.

b) R(nL‘!] =p +"f-':(q-p]n. with “f’, 7/*  and hence result.
- : s:]
¢) We need to check e ;’[ and Liksp 2 ]
a2 '

where IZUI’,. = Pr( in E:r [ use u, and receive stimulus s, w )e

[
and [, = Pr(’in Er when in ;strate x1]. = €, : lll'ff',f
i I I .|__ ! J, -| i .__J ( 3 1 I_. i F_I i I 1 'P‘_" : .
W:,-wl - {4’.% Fi-fjegs |l ‘UJ}?E '/ r.:U,@'di Wel [~ n~lJ5JJ¢-4 -'_'I"'J’f"'r],!"f, Wrf
r ¥
By sl W fi
and Ilr.lJ;' 7 | iff ]-.J_'r 2 J:;
i .F ¥ . WI ' b F
Similarly ¥ (o | o
and as [”:.-"JU 7l we need only consider [l,
/o,
i T4l g Cal p, L[Fi i
Batas (y0 Y, [/ 058 % ) oupl

i A

= gl
and by monotonicity we have i’xa £ "f’, . I
A ¥ '

Hence nLl is 5054,

To show that L is not S05A let us take actions u.....u with
men 1 —_— 1 m

states xdt....xm and actions ur.-rm with no states.

N5z y
‘ﬂﬁ;n ﬁ‘. =M by symmetry for all states r <.
Fr
tem g*7M Vb l
e 4l s e

So if we wish to maximize payoff at the next trial given a penalty

we should take an action ur.rn: which the structure will not allow.
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Hemce L. is not S0SA im (Jl,.

mén 1,
d) Here, LR-P is the only known reinforcement rule for
unstructured automata "tracking" in a dynamic environment.
P T [ |
u}l.”ll E |['|Ii.[i' g1l ||..|.t\ 1 ui{t} and s(t) = 1.
- i % = ] . .
njﬁn'['- i [h !.I-'E*\ id

HJ [! 'J:I ? I:I M + b IJ'-”:E”-]} ]' I il

e

Norman (1972) obtains a limiting normal distribution for aufficientlr

small { about the point AT 'Iv”]"“ f f ,- with variance ~ 0/ B;
J
Now from b) we have R( L,)> p+((a-p)/n), but with L, ., we have

EfLR_F) 7 p+ ((q=p)/({n+(q-p)/p)), which is the case when the

environment has just switched, But in the limit S of slow
learning we shall asyntotically have REL!:_-.p}= p-r({q-p).fn}}by letting 9:4.5,

Thus we have the result d).

e) For static environments we have:=-
fﬁ(nL.l] = f’ff'q, . where ""{" ® '-;f'-:
£ S0 R(Ly_p) -;j'gn.._,,, =40 = R(L,).
.| i " -
bl
Now by d) as 640 R( L,) > R(Ly p)

I
Thus 'ﬁ‘-‘ Er; )

also as owl R(Lp o) 7 R(pLy)
yet R(nLEJ 7 R(nLl] = R(LR_P} which gives justification

for a structural strategy rather than unstructured tracking as
used by Chandrasekaren (1967). In addition, an evolving -j] in

/Eﬂ (static) achieves optimal payoff.
"

The result e) has the interpretation that the I'R-P rule
has the same average payoff as the strategy j; reward - stay put,
penalty- move on. This strategy gives precisely the probability

matching of Norman and Yellott (1966) and in the later work of Norman (1972).
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Remarks 3.4.3.

i) It is possible that for some § and g | al:nL‘l} 4 EELR-P)

yet in many cases we could use an alternative structure nL with

larger memory. The L, ; rule in dynamic M\ has not yet been

analysed in detail.

ii) Just as the oL, was the kernal structure for /i, we

shall now show that L, is a stable limit in /], by considering A}

ij -
- ,
el .

iii) We shall assume that {Ton arms" |c'r"1. as in 3.3.2. b)
1 =1

Certainly as .ﬂ\;'r[} K': (4 i{’ with r |, as we proceed down the "arm".
F rH

e.g.1£i¢h gives ie fh

and ﬁ?aa iy.

. 620 .5:.' -l fl §el gl bel

T R e L G
We then obtain nI"r as S508A , and for givem ¢ we shall obtain

some r___ with r indicating the memory depth. (Cr "arm" length.)

iv) Exact caleulations for oLy aTe prohibitively complicated,
when we consider how difficult it is even to obtain the results

of 3.53.2. for zlg'

Theorem 3.b4.4,

A structured automaton evolving under Q, in medium fmq

of o 1
has L ag a stable limiting structure | '||' HU‘l :'—f“'a

1

and L., is unstable.
man '1

Proof,

We write out:=-

T s ol [ 25 B [ . k
.'Juﬁj-a - m':. ' lr {1 uJ}“ , [g.-{;’“ ﬁ:rﬁ‘“ o Jcﬂ 10.)
kL

,ib

§ ¥ 4 [o] pili Y. o8 o ¢ |
Ag” = ey il s i 0ule-Sirle 2 Abg (B-8)). ao
R r - ! u ¥
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and K = (1 =n¢ )(q-p) and ?J %J \.JJ
and similarly for s=1, interchanging p and gq; and for "-mz we

just obtain our eguations in 3.3.6.

The derivations of 10) and 11) are not of great interest,
"
but we shall see in a later theorem why ﬁ}_ must have the
d
above form.
=

The .ﬁc’,‘ are taken with :. held fixed, as in 3.3.6. ,
then the uptimalit:r property of gh I'"-.: will give convergence
to that action which maximizes expected payoff w.r.t. the

equilibrium distribution. Let x5 be a +ve recurrent state,

E T A ¢| ul #1
a) Now for s=() | Jt'i g;j w0 Af };bk >4 iR &
L
3 f“l
and se by boundary learning L:J -‘?J for some ]':F,
ier ko0 VRl
; 'y j
| T
For if gl %}‘ _;qf.- for some k then J:Ih 78 with
134 i
i ;- f
E% =l‘ E? say in a sufficiently small nbd HEJ of the boundary v%

il

b) For s=0 | ] Al

;JEZ’?Q if ﬁ?;?h? ﬂﬂ h; ﬂ and f{ﬂ,m >| ¥m $1E
i e { f ]

And by boundary learning §;-a! for some J4H
iff the above holds, else we get a contradiction as in a).
It is easy to see that this exhausts all possibilities for
J . ) o | : ol H}'
if J E st i’;’ﬁ* < d’f’ J={4. g ¢l then take ' |- 2!
) r:... _I.lltls $ﬂ
Aed 30 Le | L
so that we have —iﬁ;h?d with [€ 1, .

Similarly for s=1 we get
A 47l ' l . . I
e) AFU 70 with JEIE if g'555 ?f% ké I}

so that fi.?l for some JE [\ iff the above holds.
J

& Oy Dawvicl E Propert - VAZ8 Inisrratdonezl




107.

a) Aps0 wien 4 f a2 Yok 24, kel and | Y[
i | IcHh 1 - Lm? i

and gi—fi for some -;:: iff the above

holds.

We must note, as in 3.3.6, that we have [ 7/ for all

|~ where wu, maximizes e payoff at the next trial., But
LR | % -

we get convergence to precisely ome | ¢/, using the n-action

; A5 5.2 ! n ] .
theorem 1.6.4. with multiple optima, moting (77 -7/ L{ gla, 148

It is now easy to see that nL1 is stable and _

-

L. is not
,nj

R

stable by lemma 3.4.2.

i
Corollory 3.4.5.

™

In |, the automaton nLr is stable iff

L EL B 2 ) §ri

i ey 7R
. - o > o
et 7% where :- el .,TE'..&'”3 T\Li}
o U e gl
o T

X % *oA

[

Proof,

LeR ki,
By the symmetry of the ineguality, if it holds for arm i: v
" 2 Arli-'"z Lro |
then it is true for all arms |, . Also §[47 Ha. since Tﬂ v
in r for nL1 by 3.4.2. a).
Then apply 3.%.4. for the result. 7/

The extension of 3.5.7. b) requires the calculation of the

equilibrium distribution for nL2 which has not been done. However,

o = ]
it still remains clear that R({ L.) = R(_L.,) when ﬂﬁ, y = &1
n 1 n g N p"r
dr=i

which we proved for n=2 in 3.3.2. d).

(]

In general, the optimal ij autematon will not have the 5054

property although theffb family may achieve close to optimal payoff.

It i the discreteness of the formulation which causes the difficulties

both here and in the general existence conjecture to be given later.

Corollory 3.4.6.,

IT ﬂc?f then nL: is a stable limiting structure.

-
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/ ()
it S 3l
A n } with convention, reward links
| | st -
" K o I“}, on exterior, and penalty
¥ bl rd links on interior.
Froof.

Just note ¥ =(1 -nj )(g = p) changes sign, and we also check
S0SA property. is satisfied by nL: by modifying analysis of 3.4.4.

For g« p we actually get no change in stable structures, since

sign changes all eventually cancel out. Thus 3.4.% could be stated

for all q:[0,1 , with just the 7 comstraint. 7/
The EL: is probably the unigue limit, by symmetry requirements.

-

However, in such enumeration problems of graph theory, there

often seems to be the possibility of a subtle counter-example.

For fixed E,ﬂ,iﬁ a set of functional digraphs, and the following

lemma gives the possible basic forms.

Lemma 3.4.7,.
) .
For each s, the graph V., consists of a set of disconnected
subgraphs. Each has precisely one cyclic kernel with trees

leading to it.

Proof,
See Harary (1964). The result is just observation.
. i / &
\ : v
o Ires 2
— __}_ __'\ i " 7 [:.u-.,l";\l -k,

fl

iy —3 & | , P—
; ({ kemel ) Ly
T

For 5=0 we ecall each eyclic kernel an action switch.

For g=1 N " " " " the payoff.

We represent an arbitrary detarminiatic'vzi asi-

O

switch memory payoff
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Such functional signed digraphs have not been investigated
in the literature, but just from 3.4.7. , we see that we have a
reasonably rich family of forms to adapt to a general environment 51.
With a sufficiently large initial state space, we would
expect to achieve near optimal memory depth, by combinatorial
considerations of "ecycle length" in each action class. However,
such intuitive observations have not yet been rigorously proved.
An analysis for a fixed finite state space of the asymtotic distribution
over S0S5SA structures would appear extremely difficult to obtain,
except for the proving of more general observations as above.
Definition 3.4.8.

i) An automaton is denoted linear if an

—

memory depth of it'l'l action.

=]
n

i
n = number of actions in switch.
3 3 r—
In particular 2LIE o fﬁ;::wi;ff//{J% and
: .‘E,i' \:,:.
= N
Previously we used nL; = nLrl so all memory depths were equal in /(] .
For arbitrary aT: we cannot assert the existence of a limiting

5054 automaton but we can always achieve convergence using the

rules Hﬂj « We then search for a S505A auntomaton, yet we eventually
converge to an unstable boundary if none exists. However, even if

a 505A automaton exists, under ﬁiﬁ rulesg- we . only have - -optimality,

so we might attain an unstable boundary. See 1.8. , rule 5J),

ii) We use the notation f{ ]| 2 the set of 505A automata existing in /]|

Theorem 3.4,9,

if {%=FTL=# ; then Uq | }:I for some S50SA automaton,

under h; .
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Froof.

We have seen that ;'fh A||#() for all symmetric media and we

¥
shall indicate later why it is plausible that this is true for

an arbitrary .E
4 ! v ry J44 A J |'| i fe v 1) f 3| _':'.‘I

Doyt = el Swiltl g 2 ol b OO0 (4705 ) 12.

We take the equilibrium drift by fixing 5 in some small neighbourhood
Hij of the boun&aryu':j y and then apply 1.12.9. to each é@ﬁﬁ
associated with each EG as d;scussed after 5.3.7. Thus

we eliminate the transient effects, and consider the ff! increment

process wW.r.t. the environmental equilibrium distribution in each

state xi which is +ve recurrent.

'H;I'_—‘,' y ) .'\.,:-:. f:.- ':; II f‘ 'Ill "'_J_ll ﬁ,-‘ w'll
thes G g 3 T gk S by »ﬂ i 13,
o £ g [} = ]
i - \ i
S r\ﬁ :; ﬁ{a?aj1ﬁ - b{ﬁ wi where || “=Pr( in Eﬁh 8).
‘ LT o i o
il ¥ | F L,.:___ ‘_‘ T‘
Thuﬂ El:l'l' i rgﬁ, “f'. L:T {'ul) -'“tr G I"gﬁ!_,_ j‘ill‘:l :g“ £ F?I"F ‘_.'.l? :.U E‘i ],I_
. 'j '.u] § i) .F*h F‘ L Jh'.;J 'rh i ‘j“" it f;‘*‘ iR .5 J 4.
now S0SA =) 5':] 2| only if ug maximizes f{l‘j'l W:
J ) i
Then Zﬁj‘ w70 \fﬁqf' =7 _’1*" 50 we have stability

and we. can apply boundary learning theory
as in 3.3.6- and 3-"‘-1"1.‘, using 1.1299-

Clearly, if u, does not maximize expected payoff at the next
trial, yet sh—;[ then we get a contradiction, sinece reinforecement

-'j‘-,l:_ is 0pt.:i.mal in a markov environment by 1.12.9.

F4'd
Remarks 3.4.10.
i) We can replace 13) by _f]ﬁ' p ¢ z/‘ ';." Eqﬂ
o JR®

ll .)r
- Y]
where ’f/: = Pr(d k at t+ ] 'ri (t) and stimulus s),
1 ¢

and the stability of link [ and hence {, . depends only oni-
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} = ﬂign(‘:?ﬁ.l {j: )

o

sign ( ﬂﬁ%

| T
U 2

And boundary learning gives ﬁl_;: only if [|f* 30 din arbitrarily
small nbds of the boundary, un;:ler ':!‘]L « Note that-we need the
whole of the apparatus of chapter 1 to assert this. We need
now only test for deterministic stability to obtain stability
of the stochastic process, if we use f?':; .

ii) We could by appropriate reinforcement achieve maximization
over the next r 71 trials, but it is our aim to keep the basic

assumptions as natural as possible.

Conjecture 3.4.11.
f M "|_I,‘
a) For any 'Ilm'-ﬂ"]*;. 'jﬂ. .-I_ ql a S505A automaton.
b) The lincar family Ii;:l} covers /|| .

where m, = memory depth of ith action.

Ry

] =(h‘i‘l' hia) with Ei*l = action we switch to at kernel

under s=0 transition from ui.

hia = action we switeh to at kernel
under s=1 transition from uy .

BO hiz = i under mi? 1. (In many cases {hij] will be redundant.)

) 1 A,I4( then R(YZ)
c s | ‘1:.1,.- ern ij _?mix E'Ei .

Remarks.
a) and b) go together since it is not possible to depart
from L['E.IJ and still obtain 505A automata. If a) were false, then
it would indicate that the graphs "V'ij are acting as a "strait-jacket"
and that we should reformulate to give a larger family,
When ;'-’;'LJL- o IT o then we expect to be able to adjust fi}".'jrpt.
according to the egquilibrium distribution e, « Whilst if
'_:“Afﬂ with n= # media, then we adjust kdjin an attempt to
give a 505A kernel. .’kij"lé kernel switching matrix, (m, 2 memory vector.
c¢) states that any limiting structure in a medium fﬁ[] will

perform better than a singleton T -cell. Vo4
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Examples 3.4.712.

a) For a eyclic 3-medium m jrc (ﬂ'ﬂl’ with:=
-' iJJ qi‘!=q,q’t1-p
[\, = j#i
L‘L’s ¥ d J ) io i0
@Ir {J i-d

n
o
-
=]

[N

by

I
=]

We have as a covering for all

é_J and piz.

and for p=0 31-1 is stable for E“}z

p%‘ 3[.1 is stable for 5(. \ S'Ejé * ?‘dyz =039,

It is interesting that the threashold is not at ésjj-.

51y 1is stable if (’I-J]ﬁ*ig){5‘“‘3{““{1] <0
51._; is stable if { 'F]{[%-I]ﬂ]-‘sriJ”ﬁ*f’ )J-]] 2.

For p 74 we find that( L u L"‘ﬁ is a covering for all / .

=

For ‘_',L we have I"']w[kij’i (1 5) the kernel switching matrix,

2,1

For _L

3,1
3 we have fﬁ.]=(1 a\ s0 we cycle in the reverse direction to mcyc

e

To obtain coverings we need to i) Calculate gd '.'"?'-.l"’:ﬁ.
Y Eﬁg i s-*" TJJ
:]
J
find i) ‘gﬁﬂpaf’“ /| g g‘?‘“

and then ensure lj = only if 1.1j maximizes 2 [,up ’“ :

We are just using 3.3%.5. with S’:- as starting point.
The caleulations are lengthy, with difficulties arising in
the cyclic case since .-_u; terms all interact, whilst in the symmetric

b
M, we have ratios wia’iuz determining structures.

b) For symmetric n-media Jmn y we have I, |/ nI.: as a covering.
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. _"1 \ 113.

with L, stable for no <

I

and L. stable for njzi

n

\._\.n

4

Remarks. 3.4.13.

i) If we attempt to give a covering for ﬂﬁyc s We get nth
order polynomial inegualities in 5 which are most difficult to

handle. Thus it has not been possible to show whether
[ I\ isw covering for M) °¥°
\a Va1l n 1] Bl

ii) In section 3.9, we shall see how hierarchies of structures

can use /[l coverings.
cyc

f A -
i1ii) In the case of mi we actually obtain 3L1 V 5L1 as

#

a covering for all b and © . If the calculations are correct,then

it is of interest that no 3’L,| is required. However, for m:f; we

would still expect to require the full covering, as statéd in i),
-
iv) The strategy of nL1 is of interest}aince it has not appeared

in the literature. szl

- 5:0
nL‘L o~
Wi . : & cyec
a) With q7 %, then if we are in phase with fﬂ]n we

shall receive s=1 with highest probability, so we switch through
the actions Xy in the same order as the environment.

b) With q 7 %, then if we are out of phase we receive s=0
with highest probability so we switch through the actions in reverse
order, since this is the guickest way to find the optimal actien.

¢) With q< 3, we just have to avoid the one "bad" action

-
:Fc 1+ Yet the L, is still SOSA.

s0 we attempt to be out of phase with (’r}] &

B) Cir Dawidl E Propert - YAZA Internatbonzl ©




Tk

fIL -
v) Note that 21.1 = EL!» ;s and that ELL just eycles XTXAK e s

for all time, independent of stimulus. Thus only for ny 2 media

do such automata exhibit useful adaptive behaviour.

3.5. Relationship between ﬂﬂ. and Likelihood Axis for a 2-Medium,

We shall consider in more detail the algorithm 3.3.5.

and its relationship to our discrete structured automaton.

Lemma 3.5.1.
For 2-zctiens in ml with arbitrary u:lif and g,
,_'_,? Wmyxy and Wyyp s.t. Wmia < wr‘;r] < Wmax for tz2 0,
where (Jfj= Pr( in E, at time t| ) (8=1), s(t=1), w(t=1)).

S ;
We call the set %L = 0, : (um,., < W, < Wng, E the operating

zone for 2-actions.

Suppose F 5‘ 4, then using the notation of 3.3.5.

ﬁj Lfrl] « W, i:” “'ﬂi‘ F&[ﬂ;tf||] J,flfl[ﬂpllllif W, :i“gJ = W, M ‘F %

e i d ! If g r 1
il (-1 ¢, (1-24e4]-pd= 0 2
f
o j | 84 = "1I| rl.-" /
o Uy (g 1o0)e el (12 e (i) ol
and for gca%‘ Wingx ~ I|- JVD{'I}
and similarly for Lummi |- Wemgx by symmetry.
For S:% we have wm“f uhupsf so that Eh;is just a singleton
point.
Py S‘ L ; 20
Whilst for 077 F-i‘ we use [ [, to achieve bounds, so that
if ﬂ_e] then wm’: J.'{ PI, and in general for ﬁrl: ’ré;_ jl
/ ! % j.- 4 =
l'] (‘EJ J just interchange q,p in 15).
Finally if p7 % we interchange g and p in all the bounds so
(e ~ |~ 07/, it fect
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|27/ s s o P |
| T N e
Wz wmq - {' [Uuna Er};:J
" The Automaton EL; embedded in 2,_.
Definitions 3.5.2.
i) The set of {i_{l) s.t. ‘gw“ {1": -13}——9 for some j#i and
with 3 w,;"'.'{f‘ﬂ :"'""" k#j,i, is called the threashold set.

v

ii) The point LP.--.} Beta 2?*:];4{?',‘ ’ :”1‘4'] F‘. is called the action eguilibrium
R L point.

-7
iii) For an n-medium the operating zone Fep) is defined to

be the ([ absorbing set, for the optimal bayesian alporithm 3.3.5.
In the case of /{l, A=l: 71 and for f“mﬂ and m;yc

we have };-'-gf' I,,‘_i_ . It is for this reason that the symmetric and
eyclic environments were treated in 3.4.12, , since it simplifies the

analysis., Thus for .'fﬂ‘,_ it is optimal to take u if and only if w.?%‘

1

Lemma 3.5.3.

P

For 2-actions .-_‘1 spans g _ where a‘ u..'_ﬂ < Lo < E-:J-f
e g ut ¢ L
Proof.
Suppose that £ is not spanned by Ez . Now by bayes' rule
we must have .[E;’E,; . 8o if W, cpy vwdﬁf; we have a

contradiction, so that f{ spans _{.":” as required, with e = Eﬂ i 17

It is unelear how this could be extended to give fn spans [

or whether we can obtain the stronger result € ¢ Zﬂ.

Lemma 3.5.4.
For Z2-actions:-
a) A structured automaton may evolve te a singleton action

Lk
class []d 1£f- B, 7 M for s=0,1.

b) If 1 is not spanned by Zﬁ then the maximum payoff
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is achieved by using a single action for all time.
Froof.

5
a) If E'.d ?},; then define structure:-
‘Jlf=|- Sf*lj't, 5

0

and this is clearly SOSA.

5
Suppose that EJ‘}«_{ for s = 0 say, but that 3 S05A
o
structure with equilibrium probabilities %:=Pr( in Eﬁ] in state 1i).
A o ' e
£%-8 = Y ek
: g 3 ;?}
\ i G

;a8
However, by continuity we have either || | < A, or , },“ 16)
} Sl L2 g

and hence we have a contradiction as this gives
uﬁFi is optimal at the next trial, so the S505A structure has
multiple action classes.
Note that we get 16) since if w:) mf then ,w;f ?[whf

ire A, 24, .

b) This is immediate from the definition of :‘n 5
!/

For a singleton action class Fd y Wwe have Rlﬂ:’;ﬁ‘]r_ﬁ'_%‘as
for a 1 -cell. Then a) gives us conditions undecr which we Lave
a stable limiting automaton in certain dynamic /M . The above
lemmas have analogous forms for the n-action likelihood simplex
but as yet it is not possible to give such a precise characterization

of their partitioning = for automata learning.

3.,6. The n-Medium Likelihood Simplex.

Definition 3.6.1.
Let C, be that part of the gg simplex in which u, is the
optimal action.
We first consider the symmetric medium /fl, and the relation

between the SOSA property and the E? likelihood simplex.
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The

3I..m Automaton embedded in its W - Simplex.

el ALY Wl The boundary barriers in these

diagrams are not intended to be exact

Observations 5.0.2. representations,

a) The action switch forms around Zf £ for Ly, in ml‘l .

=

b) The [', payoff is in G, .

c¢) The memory states of u, are in C,; and they extend from
the action switch towards ':Un¢=] -

d) The () -operating zone En is around }’E’ and it

extends towards barriers around each w.,:l and (=0 .

iy = ] # d.':'j.' / 43 =
it d_}d-rl, {)}ﬁ i' ,jl_(;”z-' ,L(L.II under e
j I :;
Thus Ujﬂ‘ .1 s under any ui. and this prevents Lj from actually

reaching (), </ . Similarly for W:0.

= =t i
o) If nE.-J. En'l}iyﬂ}“,‘ﬂl‘ﬁi whilst if ﬂg?l we have nL:

stable arocund 7& within é"nﬁrm . d) and e) are the generalization

of 315-11 from :E:. to ?.I"I -

Remarks. 3.6.3.

a) The ?’u point corresponds to the equilibrium strategy for
‘nature if the process is considered as a game, since é‘}“ {,i": :;ﬁ"_‘j:[} ﬂ] .
Then with n-actions, each of which is optimal in one of n-media,
we have a "completely mixed" strategy. For i -cell games we
had gx‘i[?{r'ﬂﬂi:ﬂa!ﬂj giving eguilibrium values in 2.3.1.

ir m;"}: then all strategies u, have the =same expected payoff.

i
If ';Tn'i!,r{l'ﬂ then all strategies uj for player 2 have the same expected

B 7 i ; s Payoff. =
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h) 1f {‘ﬁ-iq <f ';,-"Jf « g then g becomes an arbitrarily
small region BpanniJng' g . For }ﬂ]b we actually proved in 3.5.7
that ':D-"mu.t"um'nj?-";' as {'?,'ﬁi 70 , and the spanning of e just follows
from FLI:. = -.E .

Yhen 1' z H”f j:fi,l..n'_.;' then [y=-¢ and the statement above
If" ] -~ -
J ‘¢ |

concerning the smallness of ‘f follows by the continuity impliecit
in bayes' rule.

If g-#} then using 3.5.4. we can achieve singleton action class f',{
iff €7 Ny 80,1 so that e ¢ . . In this sense, the structure
emerges from E,:fri and as i‘f separate we reach } and an
action switeh forms, with memory extending out towards the vertices
of the W -gimplex, always keeping within e

¢) Just as the } point gives nature an eguilibrium strategy
against the automaton, so with if'fj Hi_J,alff we find that
nature has no influence on the automaton. Here we are representing

the environmental actions by the states of f{ﬂ .

d) We have assumed that there is a unigque optimal action for
each environment.
i) If there are n+r actions in an n-medium then take
o m fi
u; s.t. .2 Qy- H for each
i 1y; fivJ J B
ii) If there are n-r actions in an n-medium, then we again

just take u, s.t. f;; iﬁ'} HJ for each ly, !

S0 with 2-actions in a 3-medium, we embed
ELE in the .[i.i_-sim'plex ag:-

The threashold is the line Zw o {' a and
S i W
= E' - d?:_ /

N'%

Wy
¥
if qi = q: for each ui}then wae effectively just have a Z-medium
- i likelihood axi=s.

In general we obtain a hypersurface of dimension n-2 in an

n-medium likelihood simplex , as the threashold set.
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Summary 3.6.4.
“We characterize the Ey likelihood simplex by:-
i) The threashold set fw_. ﬂ:,lgi:uj,lq\_ﬁ;“_jlh Vhg.i  for each u,, “,;]‘l ;
and the ‘)\ point, where eguality ‘holds in the above in the case of
a numplei:ely mixed equilibrium strategy.
ii) The envirconment eguilibrium point e, 54f grﬁﬂﬂﬁﬂ_

iii) The operating zone Z which is the [y absorbing set

for the optimal bayesian algorithm 3.3.5.

We have now informally analysed the fiﬁ family, and so we turn
i Ay
now to networks of I —-cells gk@| .
i

57« Networks of | ~cells.

Instead of a unique action at each state we now have
a jj-cell @.ﬂ. for each set of states Xy with 1 ¢ Fk « There is

now an alternative way of defining an underlying graph.

tet 4" %)s foblufon i |l 0f ) - wow stnce we
asymtutiually nbtainvthe same family of structures, although

with a different distribution, the greatly increased number of

graphs (2-72n) does not seem justified. Indeed we shall see that

we obtain all the desired results using Jj‘ as defined in 3.1.1.

The aim of this section is to show that even though we initially
have all states possessing the same distribution over all actions,
the actions automatically partition themselves through the tool
of uniform learning. The actions interact through the equilibrium

distribution Tf of the structure. We first charaterize the bL

family if structures in 3.7.7. and then relate this to fL,JHJ

in 3.7.2. and 3.7.3. , whilst 3,7.4, considers the general Ft;fmj 5
As motivation for this abstract treatment we may consider

the singleton (-cells as entities which cluster together for their

mutual benefit and then differentiate in their actions, in order to

give structural adaptation in the markovian medium M .
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Theorem 3,7.1.
Let i be a +ve recurrent state in the limit t = - as defined

y 0
in 3.2.17. , then under ‘Hi, and in environment m
a) 0= l
v n
and b) lg—?

Fr \ 1
only if max.lfR w.r.t., the equilibrium distribution }r'."":-f, for f?;"ﬂ‘]
]

and maxGJPR Welats " M " ib. : I lm"?"

ey h m) y ] ]
e denote j'l.n':, h,l family as ﬂ‘g;:ﬂ: y Where g'-fj.—-r ‘d.-J. and ui'ﬂ-? '.11: .
oo b ]
And where above we have used:=-
R o . Y
i} i ﬁz’fl- ,'Ifrf'.
sh iel"' e’
A i
ii) max., t,? R holds if we maximize the expected reward
over the next r trials w.r.t the given environment eguilibrium distribution.
Proof.
Al
This is the basic convergence theorem for V,/ | and it is
possible that a stable limit does not exist, as for F-'L;-';I]]J « We shall
assume here that ﬁ,;,-’?]lr |',?‘.
Note that max £ R is precisely the S0SA property of 3.3.8, and
that maxﬂfr" R corresponds to the result 1,12.9. in which a i -cell
asymtotically takes that action which maximizes its average payoff.
§ 4}
We essentially mimic 3.4.9. and replace L!T by 2|,,: i'ﬁ
. -
' r'J for the actuaf process
J | LIS dS
as in 3.3. but the equations are very similar, with }j i' replacing ?'.

o ¥

Consider the process in an arbitrarily small neighbourhood

throughout. We could write out ,_‘i

of the boundary absorbing set, in the usual way. Let the equilibrium

distribution for the fixed process be '][’:l fﬂ':]h;;l
;:‘
Now jl z |J 2 ’]"’ 4]’ JMH. j ,r]',.rl

"‘nc- ,

X 53 il
= | ‘T| { ¢ I-J | (4%
it BT Tl

L

q;'; 17 ).
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where I.EP: jtr .IHFL,_

ko
From 17) we get [| % only if ?@ i 7/0 VI.
and hence max, fR w.r.t. %@ by 1.12.9.

.
For EJ'” we consider J.‘iﬂ arbitrarily close to the boundary, in some

| 5 | ]
nbd Hﬁ of yﬁ say, so that ]yi~"j#-ié' .

m ™
Then Er" - L'.r_'? ; -5; '-"‘. ) Al 19)
l"l.] Jlj zhﬁ 'Ud' "Th' '.I hﬂl;’{m
£ Aot a b L3\
where L= 259 u,..lrm ,'4
q
. ,Ir_'n 45)
and [" 231 zlllm'l'n
- ™
y o TE of
and further sign( ﬂﬂ,-l- ) 7 0 iff sign( @ T F-:w )70
J HA

with LE FF. .It. J”

|
ana QF 2 g MY
bh= 2 Bf g (in- in,
km YV F

end from 19) we get max, ? R wer.t. i’. as we require

Ak g

2 Ko g 20 9 B, .

g
Convergence follows as in 3.4.9. , using a; =staircase construction
and boundary learning theory in a markov medium, to give a form
of 1.12.9. with the required equilibrium distribution for "}“‘1' .

j

Herev;. has the S05A property, but we have the additional

ul

g

constraint given on JE‘ , 50 it is unclear whether ﬂg 'fm e g}rﬂﬂ ,
I shall indicate why I believe Ea uﬁﬁ s but it is conceivable
that ﬂpdr 5’, due to difficulties with discreteness.

We may find tha.t uj maximizes the expected reward at the

L | )
next trial w.r.t. T"i sy yet the fl=cell '3‘;{ which executes this
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o
action at the next trial is unstable with respeet to Tﬁ .

it
However, no case of this has yet been found so the problem remains

unresolved, and it seems clear that most structures will be well
behaved.

The partitioning of actions is a stability result of a higher
order than the boundary learning results we have so far considered.
Consequently I shall present the analysis as a series of conjectures
with an outlined "proof'", since a truly rigorous proof would seem

to be a deep excursion into probability theory.
Foil P

Conjectures 3.7.2, and 3.7.3. are the results for §:5] which
J
correspond to those for g:@] in 3.4.4, The corresponding extension
of 3.4,9, is then 3.7.4. The | -cells themselves effectively become

"mixed actions" consisting of a distribution over the '"pure" actions.

Conjecture 3.7.2.
In E:B],, under ﬁ; =

. m | \
A Vin+ &

Sketech.

This is a form of exclusion principle, so that only ocne
i=cell is allowed in each memory.

Suppose that uj is the action which maximizes the expected

.'d | a 4 |

reward at the next trial so that 2 w: H: - q; Izﬁ Eh
c < 0 o A
Then it is optimal to choose §, s.t. b 2 ' WM . Hence the

process is unstable if both { and §,  have us as the limiting action.

Using R.W. theory it should be possible to prove that ﬁ axis

i i
crossings of M =ﬁ? is a.s, finite. Then after the last crossing
o
%k say will always be the optimal j-cell to pick if uy is

required.
-.'I'- {
Now use boundary learning to give Qﬁﬁ 7() for all j¢ E :

if @k gives max fR , when at the present trial we are in x,.
X |

: :‘I’:
For a rigorous formulation we need to consider #’ £ | 1
i ]+ i
v
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o %
so that for the instability in [, and 5-“#}{ ywhen u; is optimal

-3 RE - a. ! I,||| W,

we would expect T ana 7 ! if L--E? fic b’m gy 2 0y 7, .
5 bim A i . B
h vl

el /Y

Conjecture 3.7.3.
In ﬁﬂq under F{IQ e
a) oL s in ﬂ,[m,;‘ .
b) m<nL1 4 Q,“Eﬁ,.'l .
Sketch.

Using 3.7.2. we have one I -cell on each memory, so that if

man“! is stable we have ‘:/5-‘, say omitted., However, we know mdnLj_

is not BS0S5A by 3.4.2., , and hence given s5=0, it will be optimal to
make a transition to some @r not "included in the structure. Only

o,
L, is in $[f],| + as it is 50Sa and § is stable by inspection of § .
n 1 o 'Vin r sr ff.

This conjecture %.7.5. is certainly true in itself, but it
cannot be stated as a lemma since it relies on 3.7.2. for access

to all @r which are required.

Now let Ks be the complete digraph on rn states with n 'ﬁn-cells
and each link ¢ fn] having probability 1/rn . Then we have 3.7.2. and

347+3. giving K i -——M L, as a mathematiecal

environment
formalization of:- chaos ¥ s structure adapted to its environment.

The next conjecture considers the problem of ii=cell differentiation

for general m .

Conjecture 3.7.k.

In m under ﬁ[, i-

o) ﬂfe] = ii?-lr—?] ¥k

. <A, m)

Sketch.

In 3.7.2. we only had to consider the optimal actions, but for
®) Dy David F Probert - YAZA Internationzl €




124,
general [J| , we must consider all u;. It is possible that

-k

1 7[??1 with uy optimal at the next trial,yet 9’1 need not be
= 1

the optimal | -cell to pick. @k may allocate probability |I~ n‘n
to the action that min { R , whilst § allocates |- i) to

the action which max, ‘ER Aty d u, is excluded.

However, we can still consider axis crossings of g payoff (@;}
against Spaynff{ﬁn;] at the next trial, when we wish to use
uy and cobtain the instability as in 3.7.2. whieh prevents U{EHT-‘?J’ .
Thus using boundary learning we can consider the equilibrium
J"-.-'i_ ﬁ:l‘]l and still obtain the exclusion principle, after proving

LRl

that the fr"axia crossings 2 £ for ?payofﬂgk) - ?paynfﬂ-ﬂm)
for each pair of | -cells and each 'action Uy . (Construet a s/mg each side
of the unstable axis.)

Ir m is static then for 3.2.2. we have that there exists

a unigue ﬁh at t=,0 .,
b) It is assumed that we have a structured automaton with

every action u replaced by a T-cell which incorporates all actions.

If g,¢ﬂ_let 'L’TJ-,f B, \ﬁp “"'“U;J is 5034, so that the only possibility

i that J U, s.t. this is not included inﬂ:j , yet would be in (L, .

However, just as in 3.7.3. , the remaining @k have ﬁ.f:a{} , and

these are used if u is optimal at the next trial, just as if

we had a structured automaton with fixed actions evelving to f], .
Hence we have a contradiction unless 9 ;d [ ﬂa + Again

it is a) which is difficult to prove, whilst b) is fairly immediate

once we have a ll-cell available for each action in case it is required.

//
Networks of li=-cells would seem to act as a reasonable model
for cellular differentiation. Waddington (1967) gives a useful
basis for the biological framework.
It is perhaps useful to imagine the |-cells of ﬁlrﬁ'} as initially

representing white light, with a spectrum of colours (actions).
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Then as %'(ﬁ} evolves, it adopts the colour most expedient in
each environment, just as some animals, like the chamelemi.changc
their colour according to their surroundings.Thus the white light
within the e-m spectrum will partition itself into its component
colours (frequencies) according to their uses within the environment.

The interation between ﬁ and fm enables the environment
to "pull out" actions with certain properties from a "pool of actions",

as they are required,

"
We can prove an analogue of Uﬁm':” for structured automata,
although the result has not been of use so far in generating bounds
on absorption probabilities.

Theorem 3.7.5.

a) lim H“]V ( )=- 3p3j(d’;:!-,{uﬂ

n-<x2

where ¥V, (¢ <| if gligf  withy :j a deterministic SOSA automaton.
LT =¥
A A T By " oo

il 2 O 6.0 () e ), St )

,ML Uﬁw HP
a,,:.jf (. o ul- b (6 (2 ¥ o] ot

Proof.
: ;
)
a) %im nrsf':‘ ] J"L-'L : O|I-;rr | (;jl l'l.-'* lk’l|""° wi |0p-'i ] a
where it is aaaumed that ﬁm‘“;ﬂﬁ or alsg E\‘Jtﬁ is uaud.
t X
b) Clearly ]:ﬂ! u ;{.5. and if L"n'{v" I‘E{_,- we must get a
n.e -J “|| '
e f = 4
sontradfotion for lim 'z  2im {[) [z U 1im J Jl L5
/ h=7 v'J L "JII hFF ‘: .Ll'l' 'J
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We can interchange the U operator and the limit n<s since as

in: 11214 U“E’ converges uniformly to ﬂ. y even though

; (]
ﬁ" itself will have discontinuities, under d’i. reinforcement.

So we could verify that for each €70 J N st ol jim iuﬂﬁ*ﬂ‘-"&, 7

Remarks 3.7.6. (kg
i) If V! 4is the unigue SOSA automaton then clearly B‘Y}EI under @,,: l[ ﬁ‘,;;:-i;f#,LJIJ
J i

but generally we may obtain the"same" structure in many different
ways by relabelling the states in each l—:i « If we wish Pr{ﬂ"; - 21.1}

1 =
we have to enumerate ‘H:';; graphs, with labelled states, that give

2L1 from the initial state space % 1

ii) Thus H,& is the fixed functional solution of the operator U.
I;|r1t‘.=.:i'l:1.'u'er3.:,r,‘J this follows since in the limit tp , E, is an indicator
function, assuming we have boundary convergence, with a probabilistie
mass of jfu:,-_(ﬁ;} bl w(o]) on the met which has Jﬁ_[}?i{ﬂj ff,v;-‘j' as unity.
This is thi* fundamental equation of reinforcementJle;rning. and if
3 is defined appropriately, we shall achiewve Af‘:‘[} y in all
models using U.L. Jj=-cells, when boundary convergence is assured.

Thus there would be a genera}iaatinn of 3.7.5. toc the hierarchies
?ﬂ{‘&,‘ of 3.9, and the games qul{@ of 3.10. So given any evolving
E:tochastic automaton |‘§ with absorbing structures defined in some
environment {[ﬂ y Wwe can immediately form the functional equation
which generates the absorption probabilities over the structures.
iii) This is essentially a discrete time result of probabilistic
potential theory, where instead of a diffusion and Laplace's equation
Tf{}:ﬂ, we have stochastic difference equations and ;ﬂ?-‘-f} « Thus
any evolving stochastic automaton can be viewed as possessing a
certain potential at any time during its environmental adaptation.
Such equations are treated in an abstract form by Meyer (1966).

We can then consider a reward (penalty) stimulus as the reception

of a +ve(-ve) charge, say, with sign depending on boundary conditions.

iv) It is of interest to briefly note the relation between the
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complementary pairs (reward, penalty), (survival, extinction),
(+ve, -ve), (structure, chaos), (fixed, fluid) and the Ancient
Chinese philosophy of Yin and Yang. Here all such fundamental duals

are united through the Yin-Yang symbol, where

the spots indicate that each side of any dual pair contains a little
of the other. Gardemer (1964) relates asymmetry in molecules to
the possible origin of life, and considers the above symbol in

relation to contemporary science.
Corollory 3.7.7.
TS
ag{g, "*'"j' I, W)z,
with ([0, Geot
- 5

Proof.
Again 1lim |+ A with "V o] E-? ¥ deterministi
! ff»_?i-g ,j.ﬁjJ., I'_;j: )44 are deterministic
e v limiting structures
M
so lim U ‘ﬁ["f?ﬁ - UB/ by the same reasoning as in 3.7.5.
hFF u 5

//

We have reduced the analysis of structured automata, ‘irﬁ]} and networks of ¥

ﬂ-cells,gi.:ﬁ}],evolving underd{ in f} ,to the investigation of:=

[}

1) sign | ﬂa“;-)_ ii) sign 'f:mi}. i11) ﬂasfa.
in the usual notation.

3.8. {[=eell Controllers and "Blueprint" Learning.

We may have several evolving automata and we wish to
pick the one with the highest average payoff. e take a Hm -cell
@, overating under &, which samples the s,(t) stimulus of the

rth automaton Ar' as its rth action u_ at time t, 1<&rem.

@c is then called a ji-cell controller.

Theorem 3.5,1.

For controller @C. i-
a) 3 r s.t. 'ﬁr"'?[
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5 - . v
b) -2/ only if R(l&m&{t)) R(1ima (£)), 1

where we assume TT'F1:$$ so that 1iE'A (t) has the S0SA property.
We let Ak(t} have transitions : hq and 11m Ak(t] is some
5054 automaton with transitions J[Ll and equ1libr1um distributiunrrl
We could always ensure that %igjhk(t] exists by using ﬁ ingtead of
fl, as in 3.4.9.

We have @& in a markovian environment generated by Fﬁ A

(T

Tr

Now apply 1.12.9. to give H;T] iff @ i-pg'?ﬁﬂ where the
egquilibrium distribution € mow becomes th;t f;r the Ar. Now
combining this with 1.9.1. so0 that we need only consider the limiting
probabilities as t%,+ , we obtain:-
ﬂfTI gnh I; ﬁ ¥, W T 7 fgfihégj HS
= g : : 4' L =

If Eﬁyfuzﬁgﬂﬂ]for nk and Ah say, then we still obtain convergence
since we can relate the process to that of multiple optima in a static
medium (1.6.4.) and use af;-staircaae at each boundary to give #uperas&ingéﬁh

Clearly the ﬁr{t] could be jj-cell networks EfﬁE and the result

still follows if ﬁ,&ﬂ]¢ $ or else we use Q;ﬂ . Fid

3
This result is not elegant but a typical example of forced
centralised learning, whilst we should prefer interactive behaviour
between automata as the mechanism which increases their mutual
adaptation.
If we are given a "blueprint" for any finite automaton then
it is easy to formulate a learning process which converges to this
structure. I am putting this result here because Suppes(1959) obtains
a similar result with a different stimulus-response model. Using
€, the theorem is easily proved. Kieras (1976) considers the
theorem of Suppes in great detail and extends the limiting family

of automata.
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Theorem 3.,8.2.
Given |y™| as a finite deterministic automaton where:-
l.Lll |

s,(t) = input stimulus which gives transition i —» j if x; (t)

and 'l-';‘ 3
Then if we put q? ?gh whenever T?=f then ﬁr~??? under ¥, .
Here ?T = Prf Jj-‘h is positively reinforced (reward), il we receive
¥ s, (t) when in x;(t) anai=> j ).
Proot.

We apply the n-choice optimality theorem 1.6.%, for unstructured

3
automata in a static medium, for each link (. , and the result

L
-

3 .
is immediate. Note that the {i:j above differs from the usual §; .
¥

by
I

v

since here we must differentiate between the "blueprint" g’." ] and

the learning mechanism, /f

Remarks 3.8.3.
i) Essentially, we ensure that there is a unigue absorbing state

so that the evolving automaton is "always at the same potential"™ in
that Jg,z| for the given "blueprimt" (B.P.) if aﬂi‘“,";,i't_r'n.:: ;

ii) The essence of ii-cell learning is that [fj] {d«s. f:.}) is unknown
so that learning is "blindy just as in our own evolution, If we
allow the automaton to have access to q_:;'h we get a similar
rather artificial "forced" result to 3.%5.2. for it easy to
obtain Ei"l_}- |I :.';r.glui through reinforeing i‘;r listiaies ui(t}’
E;(t) hold at time t.

iii) We thus see that if we deviate from the i -cell formulation
through allowing the automaton to possess fuller knowledge of

m then the results degenerate almost to remarks rather than
leading to a fuller insight. So in representing structural adaptation

through an evolving automaton g y We must ensure that we have no

access to '"global" information of m .
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3.9 Hierarchical Automata.

We have considered static and markovian environments m -
In general KLF may consist of sub-environments, so that it would
be natural to define a hierarchical automaton to adapt to such an
environment. Tsetlin (1965) and Narendra and Viswanathaa (1972)
both used forms of 2-level systems for periodic media. The 1st level
determines the period whilst the 2nd level operates in the selected
environment. The qTﬁﬁ considered here is at present of conceptual
rather than praetical value and indicates how the theory of
structural adaptation may develop in the future. This seetion
contains work whieh is still rather speculative with many properties
remaining to be investigated. We first motivate the theory through

two simple examples.

EXEMEIEH 3.9.1.

Here we take the structured automaton and substitute automata
themselves as the actions executed in the states of the higher
order automaton, Thus instead of a I -cell being allocated to a set
of states, we may replace it by a network of li-cells. In these
examples the automata are fixed and so we do not require a reinforcement
stimulus; just a stimulus to determine state switching.

ay Dy ﬂ.ﬂt? N (Fo-e. 8\ A+ f¢,0)
) Jff (f o with t .l'dfrc,-l LE:.J'

I 0
vy

and where 5“d; };k}

i i
and ()< &z 0,2%

&

We denote the environment states as:=- E,”, E‘i:?"' EE1" EEE'

i
Then for /| we use EL;{ﬂ

1
i i R TRT) ELE{" :.

and for [ use 5L (2) with m chosen according to £ .
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We define stimulus s(t) = (51(t}, szft}}, where Bj(t] is
.th
applied to the j  -lewvel in the hierarchy.
b, b0,
For level 1 automata in E,, we put ':11 iy ARG j#b else qi —P*‘i-Q-

a’l o B
And similarly for level 2 we put qi:a =q=qj£a _else N

Thus we have:- | e | T e I ; | L [)
: Rl n o Ams s
ﬂthﬂlh MZL!-[I]. o 'l : 5:-1:' _I :"'".l'ﬂ; Dd.”umlz _I_I“llﬁ A

The actions on ELm(E) are replaced by automata ELr(1) and EL:{1} of

L

the first level.

b) We can form a hierarchical automaton to operate in a
8
cyeliec 35-medium in a similar manner, where the ¢/ parameter switches

between say e h and $=% . Thus we have:=

//
The technigque of 3.9.17. allows us to adapt to environments
whieh split naturally into sub- envirnnmants. If we have Rﬂﬁl@ ?‘Sw
and the parameters change, then we switch between the covering

[y
automata of ﬂ, EH as in 3.9.1., where the coverings were investigated

in 3.4.12.

Definitions 3.9.2.

n
i) Let g (ﬁj] be an n-level hierarchical automaton of actions,
r-i 4
so that the rth level has gi{@} as actions.
ii) Let E,J"{rﬂ be the transition function for the r'" level at time t,

with reinforcement under W:L. rules.
]

= I
iii) Let ﬂ‘{F[F} =Pr( E;7 EF in rth envirmimantal level when
1evel is in ™,y and
r*jl 1evel is in n

z - +1=
& O Diepdiel E Prene i

|HF-Hh|HUIhH
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iv) Let dq?'aj-r = Pr(stimulus s},

with mr=d y and (r+s)th environment level in m

rin level r on using action i in E
n-r+sH.)
v) We bhave matrix stimulus iy =(E1.‘j, B.E;j} with 835 = 1
representing rewar&l as usual,.
Here s,u is used for rth level reinforcement and B?j is

used for rth level transitions, each being independent with the

same stimulus probability. Thus we have a vector simulus for each level.

We have defined a stimulus for each level rather than a single
global stimulus since the latter would require large memory in many
cases and would fail to operate if we required nL‘_;.say, as actions.

Using aij we get in phase with m by succ;aaive levels,
rather than requiring the whole automaton to be in phase before

we benefit from the increased rewards,asin the case of global s=(s1, 52:'.
r-]
operates at time t

e

,.
vi) We define f'ﬂi as before so that g

: r r r r

if and only if x; (t) ¢ IL‘ with x; an r-level state. Thus I‘i is

the set of states in the r'> level which use action i, If each
= r
level is held in |j-cells then Fh denotes the r-level ﬂh{r} .
If we cha x> (t) £ (t41) with 4 ¢ [ ajel
e change i — i PE=iAn J f#":

P

4
"acelimatize"after its peried of inactivity.

then the automaton action g will dinitially reqguire time to

: r
We consider each level r:, With its associated memory held ineach EL )

reaching out to "tap" different environmental facets.

n n
a) g as a Hierarchical Controller. b) Fully Extended EE v

n
g 4 action switch n
n-
gl memory n
/ n-1 payoff n and action
g s; switeh n-1.

: levia].a r s.t. 1<r<n.

"
"

' : r z
gi é payoff level 1.
ﬂ\ E D Layyld £ Pragert - YALS IriEerrizitierie) ©
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c¢) Representation ofﬁ'ﬂi&rarchy in General State.

P1
th
where Si= i"" action switch, i
r e
Hi = ith Memory. and q = (Si, i'Pi} in terms of
th = these "elements'.
Pi = i payoff.

We have an abstract "expanding tongs" exploring the environment,
which can be likened to a robot under hierarchical control, as
considered by Albus and Evans (1976), in a practical context.

~ r-1
Cn the memory of each ﬁJ we have automaton actions Ei .

Remarks 3 9 3.
i) The environment transition matrix ﬂ 43 as defined in

3.9.2. 1iii) differs from that used in the motivating examples 3.9.1

In our new notation we write:-
ﬁ\_{p ( 55] , AJF” (16?1 Eﬂ
ma Ao (1)

with ¢ small:. ucgc«ﬁ;, =] 2.

ii) When we hold the actions at each level in J-cells we can write:=

(8- 606 .- &), 0

So for 9’ we have il -cells of 5";‘ . This is called Ji-cellising the
automaton actions at each level,
Then we obtain the results for hierarchies of ji-cells by the

theory previously developed for gﬁﬂ.

@ Ol Dayiel E Pronert - YaZ8 [nrarnatiorsl @




134,
-1 3’

We defineiiz{r,tJ=Prnb( use action ga at rth level on using
T i s
| ~cell @i{;] yat time 3

With the stimulus defined for each level we can immediately

modify the action partitioning conjectures of 3.7. to the case of Eﬁﬂ-
Thus we can jl-cellise the actions at each level to obtain the full
gn(ﬁq‘nr define a fixed action for each level state, to gi?egn(m} .
These are then the natural generalisations of T-cell networks

i
and structured automata, respectively, which are 71-level hierarchies g .

Clearly we could also construct mixed hierarchies so that we W-cellise

some levels and leave the remaining levels as fixed actions.

iii) The actions at the rth level are denoted ui[rJ and are held

in the TL:(r,t} if we i-cellise. The ui{r} are 9?| automata

which receive stimuli 8 with probability JqE Sir
i

. 0
— L . [ -
We put R = £ ,-\f.'.f' 2 Jue - |im = é’é’ S I,||[| where "f: = eqm dsn
Z_ i quf{r'l Taa ! Sl 4 e
rat e W T fcrs over E; and states i.

W=

50 the average reward is obtained by summing over each level r.
s
a“;.j"

r
only if we use the same action automaton % on % 2 successive trials,

iv) For hierarchical automata, we reinforce transition links

v) We note that biclogical systems themselves have a hierarchically
stable organisation, so that each level is stable within the
appropriate environmental level.

We can obtain a generalised S05A 1limit theorem, with the stable

= o n iy
limiting family defined as ﬁg for an n-level hierarchy g | @) .

Theorem 3.9.4,
e S1r

5
If ﬁ: (m]¢‘¢ then under ﬂp I 'T'u'tlr"? nui' for some hierarchy

']

that 4is SOSA at each level, Em' %ﬂ 'w]
Proof.
As in %,7.1. we can write the SOSA property as max1fR at each
level with respect to the eguilibrium distribution over the complete

hierarchy.
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We essentially need only apply 5.4.9. to each level r.
5 =
Thus ﬂ:;'r-ﬂ only if max, YR w.r.t. '1{& [I"l where : =

th

level and m

54
Pial [ﬂ= Pr ( in Egat r at r+s level , and in

n-r+l1+s.

automaton state i  _ at level r+s, with 0¢ss n-r.)

S0 the full equilibrium distribution is ']rf[,‘) ,yet for level r we
are only dependent on environment and automaton levels s 7 r above us.

Now, as in 3,k.9., , we take +ve recurrent state xi at level r
and consider ﬁsi'r in an arbitrarily small neighbourhood of the
absorbing boundary. Then we fix 1&'?']'; and find EE?!’ in
eguilibrium, on considering the hierarchical automaton as a markov
process. Note that each level r must have at least one +ve recurrent
state, since autﬂm&tun has finite state space.

Now we have ﬂﬁs”;o with jc FX if and only if Ha‘{l’)
gives max,fR w.r. t.. the equilibrium distribution ’]‘"[r)

Then under é&, y We use 1.12.%9. 4, with E being replaced by

of
'}'I- ﬁ‘] y and hence the limiting structure at each level is S505A

as required.

//
n
We can prove a similar theorem to 3.7.1. for EJ [ﬁ] which
]
will give us the limiting family '8‘, for an evolving n=level hierarchy.
Theorem 3.9.5.

Let i be a +ve recurrent state as t >~ at level r, feor each r.

Then under Q and in m 1=

D ol dh ey, e §'6)

ii) “ﬂ-d = |
# |
only if max, ¢ R w.r.t the equilibrium distribution 1ilf|  for i
- k|
and max g R T " " " fgl..u-i " Tlm-ld ‘?!I
where %:,ﬁ =Pr( environment level sz r is in o ] we use % k{r},in eqm)

We denote I’u\“ ai{r‘ilfamily as E:}Hﬂ}, where J:%'rf?'i’u-' and “mraj ﬁ
& ]

&
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Proof.
This is just a restatement of 3.7.1 for n-levels, and the same
method of proof appnlies in each level, Thus we extend B, to 'E:

just as jiglh‘i E‘i?ﬂ‘ﬁ us ﬁﬁ ﬂﬂ; * ff

Now at each level we conjecture that the i -cellised actions
partition themselves, so that 3.7.2. — 3.7.4. have natural extensions.
Thus on each r-level memory F: we conjecture that only one E:l is
allowed, and then that E:'l'mll:. 4 fﬂl: Irfml| y for each .-m .

An evolving gﬂfﬁk will first adapt to the higher level environments
before proceeding to "explore" the more minor environmental facets of
the lower levels with the lower g?ﬂ] hierarchies. Thus, intuitively,

we can imagine a "wave'" of adaptation and action partitioning

n
travelling down the"branches"of the hierarchical controller S .

510 Games between Structured Automata.

In the Russian Literature there are many papers which have
been published on games between fixed deterministic automata, which
were first formulated by Tsetlin (1963). Subseguent work has been
published by:- Butrimenko (1967), Gersht (1967), Ginzburg and Stefanyuk
(1970), Gurvich (1975), Kalinin (1965, 1966), Krinskii( 1963,1966),
Takeuchi (1974), Tsertsvadze (1970), Tsetlin (1964, 1965, 1974),
Vaisbord (1968), Varshavskii (1972) and Volkonskii (1965), Some
related papers, including applications, are also to be found in the
bibliography at the end of the thesis.

We define ;5}:{' as before, in 2.5.7., and then we uhtar:':.nl3.10.1.
quite easily. The game between ii-cell networks is denntedﬂg;(@).

i
Theorem 5.10.1.

1

For n , structured autnmta:‘ gh{m 1 ;c,’kf n ,evolving under g;
with gpame matrix .Iﬁpf then:-

a) A purs_-atrategy'lgf is stable in the limit fasrif and only if it

is a Nash Point of ijF' .
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511
b) ﬁ-,' in —?] only if the limiting structure has the S0SA

|

]

property w.r.t ITF y where "f} is the equilibrium distributiecn

[ w -

== plg
for 116:(Q) -

i:nLJ 1
Proof.

a) This does not assert unigueness; only that any Nash Point
is stable. We follow 2.5.1. and 3.2.2. in considering f-zj(r,t}

*
near an absorbing barrier of pure strategies F for each automaton r
5 . £
at time t. Then ﬂf; :ﬁ}?ﬂ “:hin a sufficiently small nbd of
the boundary iU—?‘g’[’}"‘”’J}.ﬁf _ﬁ* is a Nash strategy. Now we use the
T
fatd
boundary learning theory of 1.7.5. under 8: to give convergence
I r
to F" only if it is a Nash Point,so that each gf just contains T;?,f ,in the
~ limiting structure.

It is unresclved whether other limiting stable structures exist

k =
if }ﬂ"has Nash Points. For a singleton jl-cell this is solved in 2.5.1.

b) This dees not give the existence of limiting deterministic
structures for it is possible that such limits do not always exist,
as in the periodic trajectories of 2.3.

The result is obtained in the same way as the theorem 3.4.9. ,
by writing out .Eﬁ%

eguilibrium distribution ?% « Then apply 1.12.9. , with e replaced

{ﬂ , where the average is taken w.r.t. the

by 'jﬁ to obtain the S0SA convergence constraint. //

Remarks 3.10.2. 8

o4
i) Again, we could extend 3,10,1, to E,QFMQ on defining EE 0 for
the product paming environment, with strategy vector ﬂ* Sk

ii) We would like the limiting structures to resemble the automata

of Krinskii (196%), which have a deterministic '"eircular" behaviour,

but it is uneclear whether they have the S0SA property in a gaming
environment. Thus although the linear automata are ideally suited

to learning in markovian media, we need cyclic behaviour for

automata games, with the digraph resembling the E; =const trajectories of
section 2.3.

[
iii) A structural analysis of TIPI;(Q] still remains to be done, but
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it seems most unlikely that they will achieve worse results than
the paming singleton fi-cells, just as we proved 3.2.2. for games

against"nature'.

3.11, Conecluding Remarks.

- T T e [ There are esséntially twe means by which automata can
increase their average payoff in the formulation of this chapter.
a) Memory extemsion. ( "Tree" T )
b) Action switch enlargement. ( "Kernel" T )

We represent this diagrammatically as:=-

©

W

s

.»-.+ memory depth T

I~ % payoff ~ adaptation T

number of T

C" ) ..+.. actions.

We saw in 5,8, that efforts to improve on suboptimality using

controllers, were rather artifieial, It would be preferable to
postulate community interaction so that automata learn by their
mutual errors and sucCcesses.
For a) we need to "fluidise the structure" and increase the
adaptation through observing other automata with larger memories.
In addition, we could allow automata to possess individual curiosity
so that some may act as pioneer automata in trying out new structures.
A preliminary model for community behaviour is presented as 3.11.2.
For b) new actions may arise which are expedient in some
environment and which automata can now incorporate im their structure,
The cities of Paris and Rome have new "actions"™ in their ‘kernel of

operation'; La Défense and the E.U.R. respectively. Bacon (1974) adopts

such an evolutionary approach in his .palitaﬁj?a.st”dy.?fxgi?%ﬁngw Horile
I d ey APjEE ol N L0l
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Model 3.11.2. ("The Sheep Effect'.)
Here we are not concerned explicitly with the automaton structure
but just in their relative expediency in an environment. In this very
simple model we assume perfect mutual observation between automata,

rather than the usual observation with uncertainty as in fi-cell theory.

i} We define states x;= 1,2, +sesem with state 1 "best" and then

the utility monotonically decreases to give state m '"worst".

ii) We define automata Agy secces @ .

iii) If an automata observes another automata doing "better" than

itself, then it jumps with probability 1/m to some Xqe
iv) Let A (s)=Pr( all automata are eventually absorbed in state s

j..lioo-ljn )
where initially a, is in state Ji.]

v) Clearly Aits} is only a function of min ji and the number
i

which attain this.

S50 define ﬁjr = Pr( all automata eventually absorbed in x=1, given r
start in x=j71.)

=T
] N=I'=5

Thus Ay, = Ajr(_:_é)n'r + g,‘ by (n;r)[lrtm

£, 2 e

m

or Adr( {m-j)n‘r) é; Aj,r+s &-r]fm-j}n-r-s

And if A1n =0 Ajn = 0, 3#, then:-

hyg ™ 1= [1/;1]“‘1' for j>1 and n large. So that the probability

of non-optimal absorption becomes geometrically small as n increases.

vi) Thus we have a bootstrapping effect in that the "pioneer" automata

"pull up" the trailing '"sheep" automata, yet which themselves may
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change roles and act as the new pioneers, Since the automata are
only guided by each other, there is always a finite probability

that they will all become absorbed together in the same sub-optimal state.
’f

235, As motivation for extending the jj-cell theory to hierarchies

of automata qn[@)in 3.9. , we provide the following brief intuitive outline.
Initi&liy we suppose there are singleton Tl=cells which proceed to

cluster for their mutual benefit and subsequently differentiate in

their roles as in 2.7. Now to form s we reguire a mechanism of

collective behaviour between the %: which eventually gives rise to

a critical point and the gelation of structural links, followed

by role differentiation. (Whittle 1971). 1In this way automata

can attain adaptation in higher environmental lewvels of ﬁﬂ y Within

fi
a single entity gﬂ . The automaton | acts as a hierarchical contreller

|
with autonomous behaviour within eani lower level, and which we could
now embed in the appropriate ¢y -likeliheod Bimplex. as in 3, 6.,fnr

Such a process of clustering and subseguent rbole differentlatlon
appears frequently in nature. In particular, we may proceed up the
evolutionary tree from the single-celled amoeba, eventually obtaining
the multicellular mammals and the cultural society of man. The actual
mechanism of reinforcement here is natural selection over many
generations with the genetic encoding of this information giving
embryonic cell differentiation and subsequent learning over the
lifetime of each individual,
3.11.4, At present, most models in psychnlugi;al learning theory
are based on the unstructured automaton, yet semantic ideas express
the brain as a structure evolving through the recption of environmental
stimuli, as in the simple qualitative models of De Bono (1971).

So as a simple conceptual model, we have investigated the i-cell

as a basis for structural learning, with its family of learning functions,
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F.11.5. Probability expresses our environmental uncertainty so
that through learning, our ideas become rigid, and we act
according to that structure.
Research regquires us to "fluidise" this structure to enable
us to '"extend the trees" and "enlarge the kernels", in our "blind"

attempts at environmental understanding and adaptation,

=
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The Evolution of Stochastic Automata. D.E.Probert.

The fundamental idea underlying thie research is that an initially
randomly structured stochastic automaton placed in an environment ecan
change its structure to increase its adaptation. The automaton gains
information from the environment by executing actions and consequently
receives reward or penalty stimuli with some probabilistic distribution.

The first part of the thesis concerns optimal reinforcement rules
for markovian learning and a comprehensive theory is developed which
also gives new insight into the operation of the many existing non-optimal
rules. The behaviour of optimal rules in both static and dynamic environments
is considered. An automaton evolving through™uniformly learning' rules which
embrace both the new non-linear optimal rules and existing linear rules,
is defined and called a Ti-cell.

Next, a model for games between Ji-cells is formulated and it is proved
that they converge to pure saddle strategies when they exist. Deterministic
approximations are found in the case of games with equilibrium mixed
strategies and the trajectories are shown to be closely related to those
of the Volterra model for predator-prey behaviour.

The thesis then develops a theory for the operation of networks
of fi-cells. It is proved that starting from a random structure, the
automaton evolves to an expedient structure which represents a discrete
approximation to bayesian updating. The structure characteristically
consists of a central action switch, surrounded by "arms" of memory states
which reach out to the vertices of the likelihood simplex in which it
is embedded. It is shown how such evolving automata can serve as a simple
medel of cellular differentiation. Finally it is shown how the theorems
have natural extensions to Ti-cells arranged hierarchically, which give

greater adaptation in hierarchical environments.
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